## Пневматический захват серия МНҮ2



## Технические характеристики

| Тип | 2-пальцевый захват с углом раскрытия $180^{\circ}$ |
| :--- | :--- |
| Принцип действия | Двустороннего действия |
| Среда | Очищенный сжатый воздух, с содержанием масла или без него |
| Рабочее давление (МПа) | $0.1 \sim 0.6$ |
| Рабочая температура ( ${ }^{\circ} \mathrm{C}$ ) | от -10 до +60 |
| Точность позиционирования (мм) | $\pm 0.2$ |
| Присоединительная резьба | М5 |
| Макс. частота срабатывания (цикл/мин) | 60 |



| Тип | MHY2-10D | MHY2-16D | MHY2-20D | MHY2-25D |
| :--- | :--- | :--- | :--- | :--- |
| Диам. поршня, мм | 10 | 16 | 20 | 25 |
| Эфф. удерживающий момент (H/M) <br> при 0.5 (МПП)* | 0.16 | 0.54 | 1.1 | 2.28 |
| Угол раскрытия | $-3^{\circ} \sim 180^{\circ}$ |  |  |  |
| Вес (г)** | 70 | 150 | 320 | 560 |

* Эффективный удерживающий момент приводится для средней точки рычага L на одном пальце. Более точные значения см. на диаграммах (стр. 625).
** Вес захватов указан без учета датчиков положения.


## Номер для заказа

| $\varnothing$ поршня (мм) | Номер для заказа |
| :--- | :--- |
| 10 | MHY2-10D |
| 16 | MHY2-16D |
| 20 | MHY2-20D |
| 25 | MHY2-25D |

## Объем поставки

Захват поставляется без крепежных элементов и датчиков положения.
Датчики положения заказываются отдельно (см. стр. 627)

## Усилие заквата



MHY2-20D


MHY2-16D


MHY2-25D



Размер I


## Критерии выбора

Выбор надлежащей модели
должен осуществляться на основании следующих критериев:

- Вес манипулируемых деталей
- Коэффициент трения между захватом и деталью
- Пространственная компоновка деталей

Рекомендуется выбрать захват

таким образом, чтобы усилие захвата было в 10-20 раз больше веса детали

Пневматический захват с углом раскрытия $\mathbf{1 8 0}^{\circ}$

## MHY2

## Конструкция

ø 10
ø 16
ø 20, ø 25

## Положение: захват закрыт



Положение: захват раскрыт


## Спецификация

| Поз | Обозначение | Материал | Примечание |
| :--- | :--- | :--- | :--- |
| 1 | Корпус | Алюминний | Анодирование |
| 2 | Поршень | $\varnothing 10: ~ н е р ж . ~ с т а л ь ~$ <br> $\varnothing 16-\varnothing 25: ~ а л ю м и н и и ̆ ~$ | $\varnothing 16-\varnothing 25:$ <br> хромирование |
| 3 | Клин | Нерж. сталь | Термообработка |
| 4 | Палец | Нерж. сталь | Термообработка |
| 5 | Крышка | Полимер |  |
| 6 | Кольцо | Полимер |  |
| 7 | Ось | Нерж. сталь | Азотирование |
| 8 | Подшипник А | Сталь |  |
| 9 | Подшипник В | Алом. сплав |  |
| 10 | Концевая плита | Нерж. сталь |  |
| 11 | Демпфер | Полиуретан |  |
| 12 | Ролик | Подшипниковая сталь |  |
| 13 | Ролик | Высокоуглеродистая сталь | Азотирование |
| 14 | Магнит |  |  |
| 15 | Стопорное кольцо | Сталь | Никелирование |
| 16 | Винт | Нерж. сталь |  |
| 17,18 | Уплотнения <br> (ремкомлект) | КВR |  |
| 19,20 |  |  |  |

## Размеры



Паз для монтажа датчиков положения


| Тип | A | B | C | D | E | F | G |  | H | I | J | ØK | L | M | N |  | 0 | P |  | Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MHY2-10 | 22 | 23.5 | 4 | 24 | 18 | 35 | 47.5 |  | 58 | M3 | 6 | 3.4 | M3 | 4 | 9 |  | 30 | 3 |  |  |
| MHY2-16 | 28 | 28.5 | 5 | 30 | 20 | 41 | 55.5 |  | 69 | M4 | 8 | 4.5 | M4 | 5 | 12 |  | 3 | 8 |  |  |
| MHY2-20 | 36 | 37 | 8 | 36 | 25 | 50 | 69 |  | 86 | M5 | 10 | 5.5 | M5 | 8 | 14 |  | 42 |  |  |  |
| MHY2-25 | 45 | 45 | 10 | 42 | 30 | 60 | 86 |  | 107 | M6 12 |  | 6.6 | M6 | 10 | 16 |  | 50 |  |  |  |
|  | R | S | T | U | V | W | X | Y | Z | AA | BB | CC | DD | EE | FF | GG | HH | 11 | JJ | KK |
|  | 23 | M3 | 6 | 3 | 6 | M3 | 6 | 24 | 30 | 11H9 | 1.5 | 9 | 15 | 3H9 | 3 | 13 | 2 | 4 | 9 | 12 |
|  | 25 | M3 | 8 | 4 | 7 | M4 | 8 | 30 | 38 | 17H9 | 1.5 | 12 | 20 | 3 H 9 | 3 | 18 | 2.5 | 4 | 15 | 14 |
|  | 32 | M4 | 10 | 5 | 9 | M5 | 10 | 38 | 48 | 21H9 | 1.5 | 16 | 26 | 4H9 | 4 | 20 | 3 | 5 | 19 | 18 |
|  | 42 | M5 | 12 | 6 | 12 | M6 | 12 | 46 | 58 | 26H9 | 1.5 | 18 | 30 | 4 H 9 | 4 | 24 | 3 | 5 | 23 | 22.5 |

## Злектронные датчики D-F9PL/D-F9BL

## Технические характеристики

| D-F9PL/D-F9PVLD-F9BL/D-F9BVL (с индикатором рабочего состояния), длина кабеля 3 м |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Номер для заказа | D-F9PL | D-F9PVL | D-F9BL | D-F9BVL |
| Тип вывода | 3 провода <br> осевой | 3 провода <br> вертикал | 2 провода <br> осевой | 2 провода <br> вертикал |
| Выход | PNP структура | - |  |  |
| Область применения | ИС/реле/SPS | реле/SPS |  |  |
| Напряжение питания VDC | $4.5 \sim 28$ | - |  |  |
| Потребляемый ток | ВЫКЛ: $<1$, ВКЛ.: $<15$ | - |  |  |
| Рабочее напряжение VDC | 28 | 24 |  |  |
| Макс. ток (мА) | $<50$ | $5 \sim 30$ |  |  |
| Внутреннее падение напряжения | $<1.5$ В | $<4.5$ B |  |  |
| Ток утечки | При 24 В пост. <10 мкА | При 24 В пост. <1 мA |  |  |
| Индикатор рабочего состояния | ВКЛ.=красный светодиод |  |  |  |

- Время срабатывания - 1 мс
- Исполнение кабеля - маслостойкий винил, наружн диаметр 2.7 мм, 0.15 мм $^{2}, 0.18$ мм $^{2}$
- Устойчивость к ударным нагрузкам - 100 G
- Сопротивление изоляции - >50 МОм при измерении с напряжением 500 VDC Испытательное напряжение - 1000 VDC (в течение 1 мин)
- Температура окружающей среды --10~ +60С
- Степень защиты - IEC IP67, а также водонепроницаемость по JISCO920, маслостойкость

D-F9PL / D-F9BL

## Размеры D-F9PL / D-F9BL



Размеры D-FgPVI / D-FgBVI


## Злектронные датчики D-F9PL/D-F9BL

## Технические характеристики

| D-F9PL/D-F9PVLD-F9BL/D-F9BVL (с индикатором рабочего состояния), длина кабеля 3 м |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Номер для заказа | D-F9PL | D-F9PVL | D-F9BL | D-F9BVL |
| Тип вывода | 3 провода <br> осевой | 3 провода <br> вертикал | 2 провода <br> осевой | 2 провода <br> вертикал |
| Выход | PNP структура | - |  |  |
| Область применения | ИС/реле/SPS | реле/SPS |  |  |
| Напряжение питания VDC | $4.5 \sim 28$ | - |  |  |
| Потребляемый ток | ВЫКЛ: $<1$, ВКЛ.: $<15$ | - |  |  |
| Рабочее напряжение VDC | 28 | 24 |  |  |
| Макс. ток (мА) | $<50$ | $5 \sim 30$ |  |  |
| Внутреннее падение напряжения | $<1.5$ В | $<4.5$ B |  |  |
| Ток утечки | При 24 В пост. <10 мкА | При 24 В пост. <1 мA |  |  |
| Индикатор рабочего состояния | ВКЛ.=красный светодиод |  |  |  |

- Время срабатывания - 1 мс
- Исполнение кабеля - маслостойкий винил, наружн диаметр 2.7 мм, 0.15 мм $^{2}, 0.18$ мм $^{2}$
- Устойчивость к ударным нагрузкам - 100 G
- Сопротивление изоляции - >50 МОм при измерении с напряжением 500 VDC Испытательное напряжение - 1000 VDC (в течение 1 мин)
- Температура окружающей среды --10~ +60С
- Степень защиты - IEC IP67, а также водонепроницаемость по JISCO920, маслостойкость

D-F9PL / D-F9BL

## Размеры D-F9PL / D-F9BL



Размеры D-FgPVI / D-FgBVI


# $180^{\circ}$ Angular Style Air Gripper <br> Rack \& Pinion Style <br> Series MHW2 

Size: 20, 25, 32, 40, 50

How to Order


Applicable Auto Switch/Refer to page 12-13-1 for further information on auto switches.


[^0]* Auto switches marked with a "O" symbol are produced upon receipt of order.

Note) Take note of hysteresis with 2-color indication type switches. Refer to "Auto Switch Hystersis" on page 12-10-24 when using the 2-color indication type D-Y7BAL. Refer to page 12-13-25 for auto switch specifications.

## $180^{\circ}$ Angular Style Air Gripper Rack \& Pinion Style

Specifications


| Fluid | Air |
| :--- | :---: |
| Operating pressure | 0.15 to 0.7 MPa |
| Ambient and fluid temperature | -10 to $60^{\circ} \mathrm{C}$ |
| Repeatability | $\pm 0.2 \mathrm{~mm}$ |
| Max. operating frequency | $\sigma 20,25: 60 \mathrm{c.p.m}$. <br>  <br>  <br> Lubrication |
| Action | Not required |
| Auto switch (Option) $50: 30 \mathrm{clos}$ ) | Double acting |

## Model



| Model | Bore size (mm) | Effective ${ }^{(1)}$ gripping force ( $\mathrm{N} \cdot \mathrm{m}$ ) | Opening angle (Both sides) |  | Weight (2) <br> (g) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Opening | Closing |  |
| MHW2-20D | 20 | 0.30 | $180^{\circ}$ | $-5^{\circ}$ | 300 |
| MHW2-25D | 25 | 0.73 |  | $-6^{\circ}$ | 510 |
| MHW2-32D | 32 | 1.61 |  | $-5^{\circ}$ | 910 |
| MHW2-40D | 40 | 3.70 |  | $-5^{\circ}$ | 2140 |
| MHW2-50D | 50 | 8.27 |  | $-4^{\circ}$ | 5100 |

Note 1) At the pressure of 0.5 MPa
Note 2) Except auto switch
*Refer to "How to Select the Applicable Model" on page 12-10-4.

- Refer to pages 12-10-4 to 12-10-5 for the details on effective holding force and allowable overhanging distance.


## © Precautions

Be sure to read before handling.
Refer to pages 12-15-3 to 12-15-4 for Safety Instructions and Common Precautions on the products mentioned I in this catalog, and refer to pages 12-1-4 to 12-1-6 for Precautions on every series.

## Mounting

## MHW

## $\triangle$ Warning

When using right angle finger tap mounting type, monitor the interference of the bolt with the speed controller.


## Series MHW2

Construction

## Closed condition



Open condition


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| (1) | Body | Aluminum alloy | Hard anodized |
| (2) | Piston | Stainless steel | Nitrided |
| (3) | Pinion gear | Carbon steel | Heat treated |
| (4) | Seal cover | Brass |  |
| (5) | Bumper | Urethane rubber |  |
| (6) | Finger (A) | Carbon steel |  |
| (7) | Finger (B) | Carbon steel |  |
| (8) | Rubber magnet | Synthetic rubber |  |


| No. | Description | Material | Note |
| :--- | :--- | :---: | :---: |
|  | Cap | $020,25:$ Resin |  |
|  |  | 032 to 50: Aluminum alloy | Hard anodized |
| 69 | Rall bearing | Carbon steel | Schield type |
| (1) | Key | Carbon steel |  |
| $(3)$ | Hexagon socket head bolt | Carbon steel |  |
| (13 | Hexagon socket cap screw | Carbon steel |  |
| (44) | Type C snap ring | Carbon steel |  |
| (3) | Type C snap ring | Carbon steel |  |

## Replacement Parts

| Description |  | MHW2-20D | MHW2-25 | MHW2-32 | MHW2-40 | MHW2-50 | Main parts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Seal kit |  | MHW20-PS | MHW25-PS | MHW32-PS | MHW32-PS | MHW50-PS | (31393 |
| Piston assembly |  | MHW-A2001 | MHW-A2501 | MHW-A3201 | MHW-A4001 | MHW-A5001 | (2)(8)(5) |
| Finger assembly | MHW2-ロD | MHW-A2002 | MHW-A2502 | MHW-A3202 | MHW-A4002 | MHW-A5002 | (6)70130 |
|  | MHW2-DD1 | MHW-A2002-1 | MHW-A2500-1 | MHW-A3202-1 | MHW-A4002-1 | MHW-A5002-1 |  |

* MHW-3 Order 1 piece finger assembly per one unit.

Dimensions
MHW2-20D
Flat finger type (Standard)



4-M4 x 0.7 thread depth 5
(Thread for mounting atlachment)


Auto Switch Mounting Groove Dimensions


MHW2-20D1

## Right angle finger type



## Series MHW2

Dimensions
MHW2-25D
Flat finger type (Standard)


MHW2-25D1
Right angle finger type

## Auto Switch Mounting

 Groove Dimensions

MHW2-32D
Flat finger type (Standard)


Dimensions

## MHW2-40D

Flat finger type (Standard)


MHW2-50D
Flat finger type (Standard)


## SSMC

## Angular Air Gripper



- Angular style air gripper Series MHC now also available in $\varnothing 6$ size.
- Series MHCM2 now available for further miniaturisation.


## Series MHC2/MHCA2/MHCM2

## Angular air gripper

## Serles MHC2/MHCA2/MHCM2

## MHC2-6 $\square$

Auto switch is attachable.
$48 \mathrm{~mm} \times 20 \mathrm{~mm} \times 10 \mathrm{~mm} 22 \mathrm{~g}$


## MHCA2-6 $\square$

## Short body.

$41 \mathrm{~mm} \times 20 \mathrm{~mm} \times 10 \mathrm{~mm} 19 \mathrm{~g}$


## MHCM2-7S

Smallest size and lightest weight in MHC series.
$23 \mathrm{~mm} \times 15 \mathrm{~mm} \times 10 \mathrm{~mm} 9.5 \mathrm{~g}$


Body option
(Only for MHCA2-6)


With ø4 hose nipple

Port


With
ø4 one-touch fitting


With M3 port

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Variations |  |  |  |
| Model | MHC2-6 $\square$ | MHCA2-6 $\square$ | MHCM2-7S |
| Cylinder bore | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 7$ |
| Action | Double actingSingle acting (normally open) |  | Single acting (normally open) |
| Opening / Closing angle (both sides) | $30^{\circ}$ to $-10^{\circ}$ |  | 20 to -7 |
| Holding moment (at 0.5 MPa) | $0.038 \mathrm{~N} \cdot \mathrm{~m}$ (double acting) <br> $0.024 \mathrm{~N} \cdot \mathrm{~m}$ (single acting) |  | $0.017 \mathrm{~N} \cdot \mathrm{~m}$ |
| Repeat ability | $\pm 0.02 \mathrm{~mm}$ |  |  |
| Maximum operating frequency | 180c.p.m |  |  |
| Weight | 22 g Note) | 19 g | 9.5 g |
| Auto switch | Solid state switch (2-wire, 3-wire ) | - | - |
| Body option | - | End boss type | - |

Note) Not including auto switch weight.
Features 1

# Series MHC2/MHCA2/MHCM2 Model Selection 

Model Selection

## Selection procedure



## Step 1 Confirmation of gripping force



## Model selection illustration



Gripping force at least 10 to $\mathbf{2 0}$ times the work piece weight
The "10 to 20 times or more of the work piece weight" recommended by SMC is calculated with the safety margin of $a=4$, which allows for impacts that occur during normal transportation, etc.

| When $\mu=0.2$ | When $\mu=0.1$ |
| :---: | :---: |
| $\mathbf{F}=\frac{\mathrm{mg}}{2 \times 0.2} \times 4$ | $\mathrm{~F}=\frac{\mathrm{mg}}{2 \times 0.1} \times 4$ |
| $=10 \times \mathrm{mg}$ | $=20 \times \mathrm{mg}$ |



When gripping a work piece as in the figure to the left and with the following definitions,
F: Gripping force ( N )
$\mu$ : Coefficient of friction between
attachments and work piece
m : Work piece mass (kg)
g : Gravitational acceleration ( $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ )
mg : Work piece weight ( N )
the conditions under which the work piece will not drop are
$\underline{\underline{2}} \times \mu \mathbf{F}>\mathbf{m g}$

- Number of fingers
and therefore,
F $>\frac{\mathbf{m g}}{\mathbf{2 x} \mu}$
With "a" as the safety margin,
$F$ is determined as follows:
$F=\frac{m g}{2 \times \mu} \times a$
(Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for safety reasons, SMC recommends selecting a gripping force which is at least 10 to 20 times the work piece weight. - It is necessary to allow a greater safety margin for high accelerations and strong impacts, etc.


## Step 1 Effective gripping force: Series MHC $\square 2$ External gripping force

- Expressing the effective gripping force

The effective gripping force shown in the graphs to the right is expressed as F , which is the thrust of one finger when both fingers and attachments are in full contact with the work piece as shown in the figure below.


External gripping
MHC2, MHCA2, MHCM2


MHC2-6S/MHCA2-6S


MHCM2-7S


## Step 2 Confirmation of inertial moment of attachment



Confirm the inertial moment of one of the two attachments.
For example, in calculating the inertial moment of an attachment in the picture on the right, divide it into 2 rectangular parallelepipeds, A part and B part.

| Procedure | Formula | Example |
| :---: | :---: | :---: |
| 1.Calculate the operating conditions and attachment dimensions. | A part <br> B part | Operating equipment: MHC2-6D $\begin{aligned} & a=20(\mathrm{~mm}) \\ & \mathrm{b}=3(\mathrm{~mm}) \\ & \mathrm{c}=4(\mathrm{~mm}) \\ & \mathrm{d}=4(\mathrm{~mm}) \\ & \mathrm{e}=5(\mathrm{~mm}) \\ & \mathrm{f}=6(\mathrm{~mm}) \end{aligned}$ |
| 2.Calculate the inertial moment of the attachment. | A part <br> Inertial moment around Z 1 axis $\mathrm{Iz} 1=\left\{\mathrm{m}_{1}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12\right\} \times \frac{10^{-6}}{*}$ <br> Inertial moment around $Z$ axis $\mathrm{I}_{\mathrm{A}}=\mathrm{I} \mathrm{z} 1+\mathrm{m}_{1 \mathrm{r}_{1}^{2}} \times \frac{10^{-6}}{*}$ <br> B part <br> Weight calculation $\mathrm{m}_{2}=\mathrm{dxexf} \times$ Relative density <br> Inertial moment around Z 2 axis $\mathrm{Iz} 2=\left\{\mathrm{m}_{2}\left(\mathrm{~d}^{2} \times \mathrm{e}^{2}\right) / 12\right\} \times \frac{10^{-6}}{*}$ <br> Inertial moment around $Z$ axis $\mathrm{IB}=\mathrm{Iz2} \times \mathrm{m}_{2} \mathrm{r}_{2}^{2} \times \frac{10^{-6}}{*}$ <br> Thus, the total inertial moment is $I=I A \times B$ | Assuming the attachment material is aluminium alloy (relative density=2.7), $r_{1}=16.4(\mathrm{~mm})$ $\begin{aligned} \mathrm{m}_{1} & =20 \times 3 \times 4 \times 2.7 \times 10^{-6} \\ & =6.48 \times 10^{-4}(\mathrm{~kg}) \end{aligned}$ $\mathrm{Iz} 1=\left\{6.48 \times 10^{-4} \times\left(20^{2}+3^{2}\right) / 12\right\} \times 10^{-6}$ $=2.21 \times 10^{-8}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ $\begin{aligned} \mathrm{I}_{\mathrm{A}} & =2.21 \times 10^{-8}+6.48 \times 10^{-4} \times 16.4^{2} \times 10^{-6} \\ & =0.20 \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \end{aligned}$ $\mathrm{r}_{2}=23.5(\mathrm{~mm})$ $\begin{aligned} \mathrm{m}_{2} & =4 \times 5+6 \times 2.7 \times 10^{-6} \\ & =3.24 \times 10^{-4}(\mathrm{~kg}) \end{aligned}$ $\begin{aligned} \mathrm{Iz2} & =\left\{3.24 \times 10^{-4} \times\left(4^{2}+5^{2}\right) / 12\right\} \times 10^{-6} \\ & =1.11 \times 10^{-9}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\ \mathrm{IB} & =1.11 \times 10^{-9}+3.24 \times 10^{-4} \times 23.5^{2} \times 10^{-6} \\ & =0.18 \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\ \mathrm{I} & =0.20 \times 10^{-6}+0.18 \times 10^{-6} \\ & =0.38 \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \end{aligned}$ |
| 3. Confirm from the table that the inertial moment of one attachment is within the allowable range. | MHC2-6D/MHCA2-6D <br> Attachment inertial moment > Allowable inertial moment | Attachment inertial moment $0.38 \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ < Allowable inertial moment without speed controller $0.5 \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ <br> Therefore, the attachment can be used without a speed controller. |

## Symbol

| Symbol | Definition | Unit |
| :---: | :--- | :---: |
| $Z$ | Central axis of finger rotation | - |
| $Z_{1}$ | Axis which contains center of gravity of attachment A part and is parallel to Z | - |
| $Z_{2}$ | Axis which contains center of gravity of attachment B part and is parallel to Z | - |
| I | Total inertial moment of attachment | $\mathrm{kg} \cdot \mathrm{m}^{2}$ |
| $\mathrm{IZ1}$ | Inertial moment around Z1 axis of attachment A part | $\mathrm{kg} \cdot \mathrm{m}^{2}$ |
| $\mathrm{IZ2}$ | Inertial moment around Z2 axis of attachment B part | $\mathrm{kg} \cdot \mathrm{m}^{2}$ |
| IA | Inertial moment around Z axis of attachment A part | $\mathrm{kg} \cdot \mathrm{m}^{2}$ |
| IB | Inertial moment around Z axis of attachment B part | $\mathrm{kg} \cdot \mathrm{m}^{2}$ |
| $\mathrm{~m}_{1}$ | Weight of attachment A part | kg |
| $\mathrm{m}_{2}$ | Weight of attachment B part | kg |
| $\mathrm{r}_{1}$ | Distance between axes Z and Z1 | mm |
| $\mathrm{r}_{2}$ | Distance between axes Z and Z2 | mm |

## Limiting range of attachment inertial moment

## MHC2-6D/MHCA2-6D

| Finger opening and closing speed | Allowable inertial moment of attachment | Weight (Guide) |
| :--- | :---: | :---: |
| Without speed controller Note) | $0.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ | 2 g or less |
| With speed controller <br> $3 / 4$ to 1 and $1 / 2$ reverse rotation from fully close state | $1.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ | 3.5 g or less |

## MHC2-6S/MHCA2-6S

| Finger opening and closing speed | Allowable inertial moment of attachment | Weight (Guide) |
| :--- | :---: | :---: |
| Without speed controller Note) | $0.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ | 2 g or less |
| With speed controller <br> $3 / 4$ to 2 reverse rotation from fully close state | $1.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ | 3.5 g or less |

MHCM2-7S

| Finger opening and closing speed | Allowable inertial moment of attachment | Weight (Guide) |
| :--- | :---: | :---: |
| Without speed controller Note) | $0.3 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ | 2 g or less |
| With speed controller <br> $1 / 2$ to $13 / 4$ reverse rotation from fully close state | $1.0 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ | 3.3 g or less |

*Applicable speed controller - Air gripper direct connection type AS1211F-M3 Use a meter-in type.
Note) In case of MHCM2-7S, provide a run off space because the speed controller protrudes from the body top surface by 0.6 mm .

Note) Sometimes the work piece may not be gripped precisely because of excessive speed in finger opening and closing. Therefore, use a meter-in type speed controller to adjust the finger opening and closing speed.

# Angular Air Gripper Series MHC2-6/MHCA2-6 

How to Order


| NiI: Basic | E: Side ported <br> (double acting/ <br> single acting) | K: Axial port <br> with One-touch fitting <br> (single acting) |
| :--- | :--- | :--- | | H: Axial port |
| :---: |
| with4 hose nipple <br> (single acting) |
| (single acting) |

Applicable auto switches/Refer to pages 15 through 17 for auto switch specifications.

| Type | Special function | Electrical entry | Indicator light | Wiring (Output) | Load voltage |  |  | Auto switch type <br> Electrical entry direction |  | Lead wire length (m)* |  |  | $\begin{array}{\|c} \hline \text { Note } 1) \\ \hline \text { Flexible lead } \\ \text { wire }(-61) \end{array}$ | Applicable loads |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | 0.5 | 3 | 5 |  |  |  |
|  |  |  |  |  | DC |  | AC |  |  | Perpendicular | In-line | (Nil) |  |  |  | (L) | (Z) |
| Solid state switch | - | Grommet | Yes | 3-wire (NPN) | 24 V | 12V | - | F9NV | F9N | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | Relay PLC |
|  |  |  |  | 3-wire (PNP) |  |  |  | F9PV | F9P | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  |  | 2-wire |  |  |  | F9BV | F9B | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |

*Lead wire length symbol: $0.5 \mathrm{~m} \cdots \cdots$ Nil (Example) F9N
$3 \mathrm{~m} \cdots \cdots \cdots \cdot \mathrm{~L}$ (Example) F9NL
$5 \mathrm{~m} \cdots \cdots \cdots \cdot \mathrm{Z}$ (Example) F9NZ
*Auto switches marked "O" are produced upon receipt of order.
Note 1) For the flexible wire specification, enter -61 after the part number.
(Example) When ordering with air gripper


When ordering only auto switch
D-F9PL-61
$\varrho_{\text {Flexible wire }}$

# Angular Air Gripper Series MHC2-6/MHCA2-6 

## Specifications



MHCA2-6 $\square$ Axial port (With hose nipple)

| Fluid | Air |
| :--- | :---: |
| Operating <br> pressure | Double acting |
|  | 0.15 to 0.6 MPa |
| Ambient and fluid temperature | 0.3 to 0.6 MPa |
| Repeatability | -10 to $60^{\circ} \mathrm{C}$ |
| Maximum operating frequency | $\pm 0.02 \mathrm{~mm}$ |
| Lubrication | 180 c. p.m |
| Action | Non-lube |
| Auto switch (Optional) Note) | Double acting, Single acting (Normally open) |

Note) Refer to pages 15 through 17 for auto switch specifications.

## Model

| Action | Model | Cylinder bore (mm) | Holding moment (Effective value) N•m | Opening/Closing angle (Both sides) | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Double acting | MHC2-6D | 6 | 0.038 | $30^{\circ}$ to $-10^{\circ}$ | 22 |
|  | MHCA2-6D | 6 |  |  | 19 |
| Single acting (Normally open) | MHC2-6S | 6 | 0.024 | $30^{\circ}$ to $-10^{\circ}$ | 22 |
|  | MHCA2-6S | 6 |  |  | 19 |

Note 1) At the pressure of 0.5 MPa
Note 2) Excluding the auto switch weight.

## Option

## Symbol

Double acting


Single acting

-Body option/End boss type

| Symbol | Piping position | Piping port type | Applicable model |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | MHCA2-6 | Double acting | Single acting |
| $\mathbf{N i l}$ | Standard | M3 $\times 0.5$ |  | $\bigcirc$ |
| $\mathbf{E}$ | Side ported | M3 $\times 0.5$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{K}$ |  | With $\varnothing 4$ one-touch fitting | - | $\bigcirc$ |
| $\mathbf{H}$ |  | With $\varnothing 4$ hose nipple | - | $\bigcirc$ |
| $n n$ |  | M3 $\times 0.5$ | - | $\bigcirc$ |
|  |  |  |  |  |

## Series MHC2-6/MHCA2-6

## Construction

## MHC2-6

Double acting/with fingers open


Parts list

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminium alloy | Hard anodized |
| $\mathbf{2}$ | Finger | Stainless steel | Heat treatment |
| $\mathbf{3}$ | Piston | Stainless steel |  |
| $\mathbf{4}$ | Lever shaft | Stainless steel | Nitriding |
| $\mathbf{5}$ | Magnet holder | Stainless steel |  |
| $\mathbf{6}$ | Cap | Aluminium alloy | Hard anodized |
| $\mathbf{7}$ | Clip | Stainless steel |  |
| $\mathbf{8}$ | Bumper | Urethane rubber |  |
| $\mathbf{9}$ | Holder | Brass | Electroless nickel plated |
| $\mathbf{1 0}$ | Holder lock | Stainless steel |  |

## Replacement parts

| Description | Kit no. | Main parts | Note |
| :--- | :---: | :---: | :---: |
| Seal kit | MHC6-PS | $16,17,18,19$ |  |

## Double acting/with fingers closed Single acting



Parts list

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| 11 | Needle roller | High carbon chromium bearing steel |  |
| 12 | Magnet | Rare earth magnet | Nickel plated |
| 13 | NO spring | Piano wire | Zinc chromated |
| 14 | Exhaust plug | Brass | Electroless nickel plated |
| 15 | Exhaust filter | Resin |  |
| 16 | Rod seal | NBR |  |
| 17 | Piston seal | NBR |  |
| 18 | Gasket | NBR |  |
| 19 | Gasket | NBR |  |

## MHCA2-6 (Short body)

Double acting/with fingers open


Parts list

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminium alloy | Hard anodized |
| $\mathbf{2}$ | Finger | Stainless steel | Heat treatment |
| $\mathbf{3}$ | Piston | Stainless steel |  |
| $\mathbf{4}$ | Lever shaft | Stainless steel | Nitriding |
| $\mathbf{5}$ | Cap | Aluminium alloy | Hard anodized |
| $\mathbf{6}$ | Clip | Stainless steel |  |
| $\mathbf{7}$ | Bumper | Urethane rubber |  |
| $\mathbf{8}$ | Holder | Brass | Electroless nickel plated |
| $\mathbf{9}$ | Holder lock | Stainless steel |  |

## Replacement parts

| Description | Kit no. | Main parts | Note |
| :--- | :---: | :---: | :---: |
| Seal kit | MHCA6-PS | $14,15,16,17$ |  |

Parts list

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 0}$ | Needle roller | High carbon chromium bearing steel |  |
| $\mathbf{1 1}$ | NO spring | Piano wire | Zinc chromated |
| $\mathbf{1 2}$ | Exhaust plug | Brass | Electroless nickel plated |
| $\mathbf{1 3}$ | Exhaust filter | Resin |  |
| 14 | Rod seal | NBR |  |
| 15 | Piston seal | NBR |  |
| 16 | Gasket | NBR |  |
| 17 | Gasket | NBR |  |

## Dimensions

MHC2-6 $\square$

4-M2 x 0.4 through

*In the case of MHC2-6S, finger opening port is a breathing hole.

## Series MHC2-6/MHCA2-6

## Dimensions

## MHCA2-6 $\square$ (Short body)


*In the case of MHCA2-6S, finger opening port is a breathing hole.

## Auto Switch Hysteresis



## Hysteresis

| Model | D-F9 $\square(\mathrm{V})$ |
| :---: | :---: |
| MHC2-6 $\square$ | $4^{\circ}$ |

## Auto Switch Mounting



Note) Use a screwdriver with a grip diameter of 5 to 6 mm to tighten the auto switch mounting screw. The tightening torque should be about 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$. When you begin to feel that the screw is being tightened, turn it further by $90^{\circ}$.

## Auto Switch Protrusion from the Body End Surface

- The amount of auto switch protrusion from the body end surface is shown in the table below.
-Use this as a standard when mounting, etc.



## Series MHCA2

Body Option: End Boss Type

## Applicable Model

| Symbol | Piping position | Piping port type | Applicable model |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Double acting | Single acting |
| $\mathbf{E}$ | Side ported | $\mathrm{M} 3 \times 0.5$ |  | $\bigcirc$ |
| $\mathbf{H}$ |  | With $\varnothing 4$ hose nipple | - | $\bigcirc$ |
| $\mathbf{K}$ |  | With $\varnothing 4$ one-touch fitting | - | $\bigcirc$ |
|  |  |  | $\mathrm{M} 3 \times 0.5$ | - |

## Side Ported [E]

MHCA2-6 $\square$ E

*The specifications and dimensions not given above are identical with those of the standard type.

## Axial Port (with hose nipple) [H]

## MHCA2-6SH


*The specifications and dimensions not given above are identical with those of the standard type.

## Applicable tube

| Description/Model | Nylon tube | Soft nylon tube | Polyurethane tube | Polyurethane coil tube |
| :--- | :---: | :---: | :---: | :---: |
|  | T0425 | TS0425 | TU0425 | TCU0425B-1 |
| Outside diameter mm | 4 | 4 | 4 | 4 |
| Max. operating pressure MPa | 1.0 | 0.8 | 0.5 | 0.5 |
| Min. bending radius mm | 13 | 12 | 10 | - |
| Operating temperature ${ }^{\circ} \mathrm{C}$ | -20 to 60 | -20 to 60 | -20 to 60 | -20 to 60 |
| Material | Nylon 12 | Nylon 12 | Polyurethane | Polyurethane |

[^1]
# Angular Air Gripper Series MHC2-6/MHCA2-6 

## Axial Port (with One touch fitting) [K]

## MHCA2-6SK


*The specifications and dimensions not given above are identical with those of the standard type.

## Applicable tube

| Description, model | Nylon tube | Soft nylon tube | Polyurethane tube | Polyurethane coil tube |
| :--- | :---: | :---: | :---: | :---: |
|  | T0425 | TS0425 | TU0425 | TCU0425B-1 |
| Outside diameter mm | 4 | 4 | 4 | 4 |
| Max. operating pressure MPa | 1.0 | 0.8 | 0.5 | 0.5 |
| Min. bending radius mm | 13 | 12 | 10 | - |
| Operating temperature ${ }^{\circ} \mathrm{C}$ | -20 to 60 | -20 to 60 | -20 to 60 | -20 to 60 |
| Material | Nylon12 | Nylon12 | Poly urethane | Poly urethane |

For one-touch fittings and tubing, refer to SMC's "Best Pneumatics vol. 4" catalog.

## Axial Port (with M3 port) [M]

## MHCA2-6SM


*The specifications and dimensions not given above are identical with those of the standard type.

## Weights

|  |  |  |  | Unit: g |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | End boss type (symbol) |  |  |  |  |
|  | E | H | K | M |  |
| MHCA2-6 $\square \square$ | 23 | 23 | 23 | 23 |  |

## Angular

 Air Gripper
# Compact Type MHCM2-7S 

## How to Order




Specifications

## Symbol



| Fluid | Air |
| :--- | :---: |
| Operating pressure | 0.4 to 0.6 MPa |
| Ambient and fluid temperature | -10 to $60^{\circ} \mathrm{C}$ |
| Repeatability | $\pm 0.02 \mathrm{~mm}$ |
| Maximum operating frequency | 180 c. p.m. |
| Lubrication | Non-lube |
| Action | Single acting (Normally open) |

## Model

| Action | Model | Cylinder bore <br> $(\mathrm{mm})$ | Holding moment Note) <br> (Effective value) N•m | Opening/Closing <br> angle (Both sides) | Weight <br> g |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Single acting <br> (Normally open) | MHCM2-7S | 7 | 0.017 | $20^{\circ}$ to $-7^{\circ}$ | 9.5 |

Note) At the pressure of 0.5 MPa

## Single acting/with open



With closed


Parts list

| No. | Description | Material | Note | Replacement parts order no. |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminium alloy | Hard anodized |  |
| $\mathbf{2}$ | Finger | Stainless steel | Heat treatment |  |
| $\mathbf{3}$ | Piston | Stainless steel | Heat treatment |  |
| $\mathbf{4}$ | Pusher | Stainless steel |  |  |
| $\mathbf{5}$ | Spring | Piano wire | Zinc chromated |  |
| $\mathbf{6}$ | Needle roller | High carbon chromium bearing steel |  |  |
| $\mathbf{7}$ | Piston seal | NBR |  | MYN-4 |

Dimensions

## MHCM2-7S



## Series MHC2 <br> Auto Switch Common Specifications

## Auto Switch Common Specifications

| Type | Solid state switch |
| :---: | :---: |
| Operating time | 1 ms or less |
| Shock resistance | $1000 \mathrm{~m} / \mathrm{s}^{2}$ |
| Insulation resistance | $50 \mathrm{M} \Omega$ or more at 500 VDC (Between lead wire and case) |
| Withstand voltage | 1000 VAC for 1 min. <br> (Between lead wire and case) |
| Ambient temperature | -10 to $60^{\circ} \mathrm{C}$ |
| Enclosure | IEC529 standard IP67, <br> JISC0920 watertight construction |

## Lead Wire Length

Lead wire length indication
(Example)
D-F9P ${\underset{\text { dLead wire length }}{L}}^{\text {Lent }}$

| $\mathbf{N i l}$ | 0.5 m |
| :---: | :---: |
| $\mathbf{L}$ | 3 m |
| $\mathbf{Z}$ | 5 m |

## Lead Wire Color Changes

The lead wire colors of SMC auto switches have been changed as shown below to satisfy IEC947-5-2 standards for production beginning
September, 1996 and thereafter.
Take special care regarding wire polarity during the time that old colors still coexist with the new colors.
2-wire

|  | Old | New |
| :--- | :---: | :---: |
| Output (+) | Red | Brown |
| Output (-) | Black | Blue |

3-wire

|  | Old | New |
| :--- | :---: | :---: |
| Power supply | Red | Brown |
| GND | Black | Blue |
| Output | White | Black |

Note 1) Lead wire length Z: 5 m applicable auto switch
Solid state switch: All models are produced upon receipt of order (as standard).
Note 2) For the flexible wire specification, enter -61 after the part number.
(Example) D-F9PL-61
¢Flexible wire specifications

## Series MHC2 <br> Auto Switch Connections and Examples

## Basic Wiring

Solid state 3-wire, NPN


When power source for switch and load is not common.


Solid state 3-wire, PNP


## 2-wire system

<Solid state>


## Examples of Connection to PLC (Sequence Controller)

Sink input specification
3-wire, NPN


2-wire


Source input specification 3-wire, PNP


2-wire


## Connection Examples for AND (Series) and OR (Parallel)

## 3-wire

AND connection for NPN output (Using relays)

## 2-wire with 2 switch AND connection

$$
\begin{aligned}
& \text { In case of AND connection } \\
& \text { of two 2-wire type switches, } \\
& \text { load malfunction may be } \\
& \text { caused by the load voltage } \\
& \text { decrease when turned ON. } \\
& \text { The indicator light comes on } \\
& \text { when the two switches are } \\
& \text { turned ON. } \\
& \begin{array}{c}
\text { Load voltage } \\
\text { when turned ON }
\end{array}=\underset{\text { voltage }}{\text { Power supply }}-\underset{\text { voltage }}{\text { Residual }} \times 2 \text { pcs. } \\
& =24 \mathrm{~V}-4 \mathrm{~V} \times 2 \mathrm{pcs} \text {. } \\
& =16 \mathrm{~V} \\
& \begin{array}{c}
\text { Residual } \\
\text { voltage }
\end{array} \times 2 \text { pcs. } \\
& \text { s. }
\end{aligned}
$$

(Example) Power supply: 24VDC
Internal voltage drop: 4V

$\qquad$

AND connection for NPN output (Performed with switches only)

OR connection for NPN output


The indicator lights will light up when both switches are turned ON.

2-wire with 2 switch OR connection



Connect according to the input specification of the sequence controller, because the connection method varies with the input specification of the sequence controller.

# Solid State Switch/Direct Mounting D-F9N(V), D-F9P(V), D-F9B(V) 

## Auto Switch Specifications

## Grommet



Auto Switch Internal Circuits


D-F9P, F9PV


D-F9B, F9BV


| Auto switch symbol | D-F9N | D-F9NV | D-F9P | D-F9PV | D-F9B | D-F9BV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical entry | In-line | Perpendicular | In-line | Perpendicular | In-line | Perpendicular |
| Wiring method | 3-wire |  |  |  | 2-wire |  |
| Output method | NPN |  | PNP |  | - |  |
| Applicable load | IC circuit, Relay, PLC |  |  |  | 24VDC Relay, PLC |  |
| Power supply | 5, 12, 24VDC (4.5 to 28V) |  |  |  | - |  |
| Current consumption | 10 mA or less |  |  |  | - |  |
| Load voltage | 28VDC or less |  | - |  | 24VDC (10 to 28VDC) |  |
| Load current | 40 mA or less |  | 80 mA or less |  | 5 to 40 mA |  |
| Internal voltage drop | 1.5 V or less ( 0.8 V or less at 10 mA load current) |  | 0.8 V or less |  | 4 V or less |  |
| Leakage current | $100 \mu \mathrm{~A}$ or less at 24VDC |  |  |  | 0.8 mA or less |  |
| Indicator light | Red LED lights when ON |  |  |  |  |  |
| O Lead wire - Heavy duty oil resistant, $\varnothing 2.7,3$ cores (Brown, Black, Blue), $0.15 \mathrm{~mm}^{2}, 2$ cores (Brown, Blue), $0.18 \mathrm{~mm}^{2}, 0.5 \mathrm{~m}$ |  |  |  |  |  |  |
| Note 1) Refer to pag <br> Note 2) Refer to pag | 15 for solid <br> 15 for lead | state switch wire length. | mmon sp | cifications. |  |  |

Auto Switch Weights
Unit: g

| Auto switch part no. |  | D-F9N(V) | D-F9P(V) | D-F9B(V) |
| :---: | :---: | :---: | :---: | :---: |
| Lead wire length (m) | 0.5 | 7 | 7 | 6 |
|  | 3 | 37 | 37 | 31 |
|  | 5 | 61 | 61 | 51 |

## Auto Switch Dimensions

D-F9 $\square$


D-F9 $\square \mathbf{V}$


# Series MHC2/MHCA2/MHCM2 Safety Instructions 

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

[^2]
## © Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements. The expected performance and safety assurance will be the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified. Referring to the latest catalog information with a view to giving due consideration to any possibility of equipment failure when configuring a system.

## 2. Only trained personnel should operate pneumatically operated machinery and equipment.

Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.

## 3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.

1. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
2. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
3. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back pressure.)
4. Contact SMC if the product is to be used in any of the following conditions:
5. Conditions and environments beyond the given specifications, or if product is used outdoors.
6. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
7. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Be sure to read before handling.

## Precautions on design <br> Warning

1. A protective cover is recommended to minimize the risk of personal injury due to accidental contact with moving parts of the gripper.
2. If circuit pressure drops due to a power failure or trouble with the air supply, etc., there is a danger of work pieces dropping because of reduced gripping force. Measures should be taken to protect against unexpected drop of work due to loss of air pressure.

Selection

## $\triangle$ Warning

1. Keep the holding point within the specified range of the holding distance.
When the holding point distance becomes large, the finger attachment applies an excessively large load to the cross roller section, causing excessive play of the fingers and possibly leading to premature failure. Refer to the graph of the specified range of the holding distance for each series.


○ "L" is appropriate


X "L" is too long.
2. Attachments should be designed as light and short as possible.

1. Long and heavy attachment increases the inertial force to open and close the fingers. It may cause unsteady movement of fingers and have an adverse effect on life.
2. Even if holding point remains within the limited range, make the attachment as light and short as possible.


Selection

## © Warning

3. Select the large size gripper or use two or more grippers for one piece at once for handling long and large work.
4. Provide run off space in the attachment when using for the small or thin work.
If the run off space is not provided, with the finger part, holding condition becomes unsteady and the holding point may slide from the best position.

5. Select the model whose holding force is sufficient against work weight.
Incorrect selection may lead to release of work etc.
Refer to "Effective holding force" and infor mation to select the model by weight of work.
6. Do not use in applications where excessive external force or impact force may be applied to gripper.
It may cause malfunction. Consult SMC with regard to any other applications.
7. Select the model taking the width of fingers between opening and closing points into consideration.

## <In case of short width>

1. The holding condition becomes unsteady due to the unstable opening/closing width or the changeable work diameter.
2. When using the auto switch, the detection is insufficient.
Refer to "Auto Switch Hysteresis" and set the stroke including the hysteresis length for reliable switch function. When using water tight 2-color display auto switch, operation stroke may be limited due to light color setting at detection point. Refer to hystersis of auto switch.

## Selection

## © Warning

7. Consult with SMC in case of a single acting type, gripping with spring force only.
This can cause unstable gripping in some cases or return malfunction, due to faulty operation, etc.

## Mounting

## . Warning

1. Do not drop nor dent the gri pper when mounting.
Slight deformation can cause unaccuracy or malfunction.
2. Tighten the screw within the specified torque range to mount the attachment.
The tightening with large torque than specified range may cause malfunction, while the tightening with smaller torque may allow movement of holding position and dropping of work.

## How to mount the attachment on fingers

Mount the attachment to the mounting female thread of the finger with a bolt etc. applying the following tightening torque.


| Model | Bolt used | Maximum tightening <br> torque N•m |
| :--- | :---: | :---: |
| MHC $\square$ 2-6 | $\mathrm{M} 2 \times 0.4$ | 0.15 |
| MHCM2-7S | $\mathrm{M} 2 \times 0.4$ | 0.15 |

Series MHC2/MHCA2/MHCM2 Air Gripper Precautions 2
Be sure to read before handling.

## Mounting

## $\triangle$ Caution

3. Adjust the holding point so that excessive force will not be applied on fingers when inserting the work.
Particularly when performing a trial run, operate the equipment manually or with low cylinder pressure and speed while confirming that there is no impact or other unsafe conditions.


O Holding point is adjusted

$X$ Holding point is not adjusted
4. If the finger opens and closes at an excessive speed, the work piece may not be gripped precisely. Also, rattles or damage may be caused by inertia of the fingers or attachments. Install a speed controller to prevent shocks. Use a meter-in type speed controller.
Air gripper mounted type: AS1211F-M3
5. High frequency operation or long piping may cause condensation inside the air gripper or piping. For this reason, use a quick exhaust valve.
Air gripper mounted type: ASV1■0F-M3 Inline type: AQ240F-04

## Piping

## $\triangle$ Caution

1. Preparation before piping

Thoroughly flush the fititings to prevent dust or chips from entering the gripper.
2. Wrapping of pipe tape

When piping and fittings are installed, care should be taken to prevent contamination (Chips from piping and seal materials).
Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end.

Environment

## Warning

1. Do not use in environment of corrosive gases, sea water, water, hot water, nor vapor or in environment gives bad influence specially.
2. Do not use in direct sun light.
3. Do not subject to excessive vibration.
4. Do not use close to flame.
5.Use a cover when gripper must be used in an environment where dust or cutting oil will come in contact with gripper.
5. Consult SMC for the use in any other special environment.

Lubrication

## $\triangle$ Caution

1. Non-lube type is lubricated already. Therefore, it is not necessary to lubricate before using.
When lubricating the gripper, use the turbine oil class1 (ISO VG32) and refuel continually.
When lubrication has been started, it must be continued throughout the life of the gripper or malfunction may result.

Maintenance

## $\triangle$ Warning

1. Do not enter the transfer line nor put the object.
It may cause unexpected accidents.
2. Do not enter your hands between finger and attachment.
It may cause unexpected accidents.
3. Confirm that no work is held by fingers before releasing the compressed air to remove the gripper from the line.
Dropping of work can be dangerous.

# Series MHC2/MHCA2/MHCM2 Air Gripper Precautions 3 <br> Be sure to read before handling. 

## Mounting

## © Warning

## 3. Tighten the screw within the specified torque range to mount the attachment.

The tightening with large torque than specified range may cause malfunction, while the tightening with smaller torque may allow movement of holding position and dropping of work.

## Mounting of air gripper

Axial mounting (Body tapped)


| Model | Bolt used | Max. tightening <br> torque $\mathrm{N} \cdot \mathrm{m}$ | Max. screw-in <br> depth 1 mm |
| :---: | :---: | :---: | :---: |
| MHCA2-6 | $\mathrm{M} 2 \times 0.4$ | 0.15 | 6 |
| MHCM2-7S | $\mathrm{M} 2 \times 0.4$ | 0.15 | 4 |

Note) Axial mounting type is not available with
MHC2-6.

| Model | Bore mm | Hole depth mm |
| ---: | :---: | :---: |
| MHCA2-6 | $\varnothing 7 \mathrm{H}^{+0.022}$ | 1.5 |

Longitudinally mounting type (Body tap)


| Model | Bolt used | Max. tightening <br> torque $\mathrm{N} \cdot \mathrm{m}$ | Max. screw-in <br> depth $/ \mathrm{mm}$ |
| :---: | :---: | :---: | :---: |
| MHCA2-6 | M2 $\times 0.4$ | 0.15 | 4 |

Note) Perpendicular mounting type is not available with MHC2-6 and MHCM2-7S.

Side mounting (Body tapped, Body through hole)
-Using the body tapped


| Model | Bolt used | Max. tightening <br> torque $\mathrm{N} \cdot \mathrm{m}$ | Max. screw-in <br> depth I mm |
| :--- | :---: | :---: | :---: |
| MHC2-6 | M3 $\times 0.5$ | 0.88 | 10 |
| MHCA2-6 | M3 $\times 0.5$ | 0.88 | 10 |
| MHCM2-7S | M2 $\times 0.4$ | 0.15 | 10 |

-Using the body through hole


| Model | Bolt used | Max. tightening torque N.m |
| :---: | :---: | :---: |
| MHC2-6 | $\mathrm{M} 2.5 \times 0.45$ | 0.49 |
| MHCA2-6 | $\mathrm{M} 2.5 \times 0.45$ | 0.49 |

Note) Body through hole type is not available with MHCM2-7S.

## $\triangle$ Caution

1. Avoid the excessive force on fingers when mounting the attachment.
Any change of fingers may cause the malfunction and deteriorate the accuracy.
2. Avoid the external force to fingers.
Fingers may be damaged by continual lateral or the impact load. Provide clearance to prevent the work or the attachment from striking against any object at the stroke end.
3. Finger opening and closing stroke

Area of attachment interference

2. Stroke end when gripper is moving

3. When turning over
 Series MHC2 Auto Switch Precautions 1
Be sure to read before handling.

## Design and Selection

## Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for load current, voltage, temperature or impact.
2. Take precautions when multiple air grippers are used close together.
When multiple auto switch air grippers are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum air gripper separation of 40 mm . (When the allowable separation is indicated for each air gripper series, use the specified value.)
3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, although the auto switch will operate, the operating time will be shortened and the load may not operate properly if the speed is too great. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }(\mathrm{ms})}
$$

4. Keep wiring as short as possible.
<Solid state switch>
Although wire length should not affect switch function, use a wire of 100 m or shorter.
5. Take precautions for the internal voltage drop of the switch.
<Solid state switch>
Generally, the internal voltage drop will be greater with a 2-wire solid state auto switch than with a reed switch.

- Take note that there will be a large voltage drop if auto switches are connected in series as shown below. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.
$1-\mathrm{O}$ - $\mathrm{O}-\cdots-\mathrm{C}$ Load-
- In the same way, when operating below the specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply voltage - $\begin{gathered}\text { Internal voltage } \\ \text { drop of switch }\end{gathered}>\underset{\text { voltage of load }}{\text { Minimum operating }}$

Also, note that a 12VDC relay is not applicable.
6. Pay attention to leakage current.

## <Solid state switch>

With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load $>$ Leakage current (OFF condition)

If the criteria given by the above formula are not met, it will not reset correctly (stays ON). Use a 3-wire switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.
7. Do not use a load that generates surge voltage.
<Solid state switch>
Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch having a built-in surge absorbing element.
8. Cautions for use in an interlock circuit.
When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.
9. Secure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Mounting and Adjustment

## $\triangle$ Warning

## 1. Do not drop or bump.

Do not drop, bump or apply excessive impacts $\left(1000 \mathrm{~m} / \mathrm{s}^{2}\right.$ or more for solid state switches) while handling.
Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry a cylinder by the auto switch lead wires.
Never carry a cylinder by its lead wires This may not only cause broken lead wires but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper fastening torque.
When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position. (Refer to page 6 regarding switch mounting, movement and fastening torque, etc.)

## Wiring

## $\triangle$ Warning

1. Avoid repeatedly bending or stretching lead wires.
Broken wires will result from applying repeated bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.

## <2-wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.
3. Confirm proper insulation of wiring.
Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

Be sure to read before handling.

## Wiring <br> Warning

4. Do not run wiring near power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches, may malfunction due to noise from these other lines.

* Lead wire color changes

Lead wire colors of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter.
Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.

| 2-wire | Old | New |
| :--- | :---: | :---: |
| Output (+) | Red | Brown |
| Output (-) | Black | Blue |

3-wire

|  | Old | New |
| :--- | :---: | :---: |
| Power supply (+) | Red | Brown |
| Power supply GND | Black | Blue |
| Output | White | Black |

5. Solid state with latch type diagnostic output.
<Solid state switch>
Model D-F9 $\square(\mathrm{V})$ and all models of PNP output type switches do not have built-in short circuit prevention circuits. If loads are short circuited, the switches will be instantly damaged.
Take special care to avoid reverse wiring with the power supply line (brown) and the output line (black) on 3-wire type switches.
6. Avoid incorrect wiring.
<Solid state switch>
1) If connectors are reversed on a 2-wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
2) If connections are reversed (power supply line + and power supply line -) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line (-) is connected to the black wire, the switch will be damaged.

## Warning

1. Never use in an atmosphere of explosive gases.
The structure of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where magnetic field is generated.
Auto switches will malfunction or magnets inside air grippers will become demagnetized.
3. Do not use in an environment where auto switches will be continually exposed to water.
Although switches, except for a few models, conform to the IEC standard IP67 structure (JIS C 0920: watertight construction), do not use switches in applications where they are continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.
6. Do not use in locations where surge is generated.
<Solid state switch>
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around air grippers with solid state auto switches, this may cause deterioration or damage to the switches Avoid sources of surge generation and disorganized lines.

Operating Environment

## Warning

7. Avoid accumulation of iron powder or close contact with magnetic substances.
When a large amount of ferrous powder such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch air gripper, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the air gripper.

## Maintenance

## Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Secure and tighten switch mounting screws.
If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.
To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.

## Other

## . Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc.

# Toggle Style Air Gripper Series MHT2 <br> ø32, ø40, ø50, ø63 

How to Order

- Ideal for holding heavy work.
- The toggle mechanism holds work even when pressure drops.
- Auto switch is attachable.


Auto Switch Specifications / Refer to p.2.11-1 for further information of auto switch.

| Type | Special function | Electrica entry |  | Wiring (Output) | Load voltage |  |  | Rainl mounting |  | Direct mounting |  | Lead wire length (m)* |  |  |  | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | AC |  | DC | Perpendicular | In-line | Perpendicular | In-line | $\begin{aligned} & 0.5 \\ & (-) \end{aligned}$ | $\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$ | $\begin{aligned} & 0.5 \\ & (Z) \end{aligned}$ | None <br> ( N ) |  |  |
|  | - | Grommet | Yes |  | - | 5 V | - | - | A76H | A96V | A96 | - | $\bigcirc$ | - | - | IC circuit | - |
|  |  |  |  | 2-wire | - | - | 200 V | A72 | A72H | - | - | $\bigcirc$ | $\bigcirc$ | - | - | - | Relay, PLC |
|  |  |  |  |  | 24 V | 12 V | 100V | A73 | A73H | - | - | $\bigcirc$ | $\bigcirc$ | - | - |  |  |
|  |  |  |  |  |  |  |  | - | - | A93V | A93 | $\bigcirc$ | $\bigcirc$ | - | - |  |  |
|  |  |  | No |  |  | 5V, 12V | 100Vor less | A80 | A80H | A90V | A90 | $\bigcirc$ | $\bigcirc$ | - | - | 1 Cc circuit |  |
|  |  | Connector | Yes |  |  | 12V | - | A73C | - | - | - | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | - |  |
|  |  |  | No |  |  | 5V, 12V | 24 Vorless | A80C | - | - | - | - | $\bigcirc$ | - | - | IC circuit |  |
|  | Diag. indicator (2 colour | Grommet | Yes |  |  | - | - | A79W | - | - | - | - | $\bigcirc$ | - | - | - |  |
|  | - | Grommet |  |  |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | F7NV | F79 | - | - | - | $\bigcirc$ | $\bigcirc$ | - | IC circuit |  |
|  |  |  |  | (NPN) |  | 12V |  | - | - | F9NV | F9N | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  |  |  | 3-wire |  | 5V, 12V |  | F7PV | F7P | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  |  |  | (PNP) |  |  |  | - | - | F9PV | F9P | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  |  |  |  |  |  |  | F7BV | J79 | - | - | - | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  |  |  | 2-wire |  | 12V |  | - | - | F9BV | F9B | - | $\bullet$ | $\bigcirc$ | - | - |  |
|  |  | Connector |  |  |  |  |  | J79C | - | - | - | - | $\bullet$ | $\bigcirc$ | $\bigcirc$ |  |  |
|  |  |  | Yes |  |  |  |  | F7NWV | - | F9NWV | F9NW | - | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  | Diagnosis |  |  | (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | - | F79W | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |  | PLC |
|  | indicator |  |  |  |  |  |  | - | F7PW | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | IC circuir |  |
|  | (2 colour) |  |  | (PNP) |  |  |  | - | - | F9PWV | F9PW | - | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  |  | Grommet |  |  |  | 12 V |  | F7BWV | J79W | F9BWV | F9BW | - | $\bigcirc$ | $\bigcirc$ | - |  |  |
|  | Water tight (2 colour |  |  | 2-wire |  |  |  | - | F7BA* | - | F9BA* | - | $\bullet$ | $\bigcirc$ | - |  |  |
|  | Diag. output (2 colour |  |  |  |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | - | F79F | - | - | - | $\bigcirc$ | $\bigcirc$ | - | 1 Cc circuit |  |
|  | Latch style with diagnosis <br> output (2 colour) |  |  | 4-wire (NPN) |  | - |  | - | F7LF | - | - | - | - | $\bigcirc$ | - | - |  |

* Lead wire length
$0.5 \mathrm{~m} . . . .$. - (Example) A80C
5m $\cdots \cdots$ Z (Example) A80CZ
—........N (Example) A80CN
* Solid state switch with mark " O " is made to order.
* Solid state switch with mark "i " is
*D-F7ロWV, Z(5m) is not available.
* F7BA and F9BA is applicable to oil-proof auto switch (-X5).

Model/Specifications

| Model | MHT2-32D | MHT2-40D | MHT2-50D | MHT2-63D |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Bore size (mm) | 32 | 40 | 50 | 63 |  |
| Action | Double acting |  |  |  |  |
| Fluid | Air |  |  |  |  |
| Operating pressure | 0.1 to 0.6 MPa |  |  |  |  |
| Ambient and fluid temperature | 5 to $60^{\circ} \mathrm{C}$ |  |  |  |  |
| Lubrication | 12.4 | 36.0 | 63.0 | 106 |  |
| Finger opening angle (total) | $-3^{\circ}$ to $28^{\circ}$ | $-3^{\circ}$ to $27^{\circ}$ | $-2^{\circ}$ to $23^{\circ}$ | $-2^{\circ}$ to $23^{\circ}$ |  |
| Weight | 0.80 kg | 1.09 kg | 1.93 kg | 2.8 kg |  |
| Holding moment <br> (Effective value) Nm |  |  |  |  |  |

,
Note) At pressure 0.5 MPa

## Series MHT2

Effective Holding Force
-Work holding point should be within the range indicated in the graph.


## - Indication of effective holding force

The holding force shown in the tables represents the holding force of one finger when all fingers and attachment are in contact with thework. $\mathrm{F}=$ one finger thrust.


## . Precaution

| Be sure to read before handling.
| Refer to p.0-20 and 0-21 for Safety
| Instructions and common
precautions on the product mentiond in this catalogue, and refer to p.2.0-3 to 2.0-4 for
precautions of every series.

## $\triangle$ Warning

## Maintenance

If a workpiece is to be held by using the toggle, make sure to periodically check that the workpiece has not shifted during the acceleration of the movement. If the workpiece is not held in a stable manner, it could shift or drop and create a dangerous situation. If the workpiece is not held in a stable manner, use shims on the attachment to adjust the hold. To verify the gripping condition or to make any adjustments, make sure to do so in an area where the air gripper or the workpiece will not fall.





## MHT2-32D



MHT2-40D


MHT2-50D


MHT2-63D



Component Parts

| No. | Description | Material | Note |
| :--- | :--- | :--- | :--- |
| $(1)$ | Side plate | Aluminium alloy | Anodized |
| $(2)$ | Finger | Carbon steel | Black zinc chromated |
| 3 | Lever | Carbon steel | Black zinc chromated |
| $(4)$ | Joint | Carbon steel | Black zinc chromated |
| $(5)$ | Shaft | Stainless steel |  |
| 6 | Joint pin | Stainless steel |  |
| $(7)$ | Cylinder plate | Soft steel | Black zinc chromated |
| 8 | Lever pin | Stainless steel |  |
| $(9)$ | Bearing |  | Steel lined oil imfilled acetal resin bearing |
| 10 | Cylinder |  | Compact cylinder |

MHZ
MHQ
MHL2

## Attachment Design

Use shims for fine adjustment of the attachment.


Auto Switch Installation


| Bore size (mm) | Rail mounting |  |  |  |  |  |  |  |  |  | Direct mounting |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D-A7■/A80 |  | D-A7DH/A80H <br> D-A73C/A80C <br> D-F7口/J79 <br> D-F7■V/J79C |  | D-A79W |  | D-F7BA <br> D-F7■W <br> D-F7ロF <br> D-J79W |  | D-F7■WV |  | $\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$ |  | $\begin{aligned} & \text { D-F9 } \square \\ & \text { D-F9 } \square \text { V } \end{aligned}$ |  | D-F9BA <br> D-F9■W <br> D-F9■WV |  |
|  | A | B | A | B | A | B | A | B | A | B | C | D | C | D | C | D |
| 32 | 9 | 6 | 9.5 | 6.5 | 6.5 | 3.5 | 13.5 | 10.5 | 10 | 7 | 8 | 5 | 12 | 9 | 11 | 8 |
| 40 | 13 | 8.5 | 13.5 | 9 | 10.5 | 6 | 17.5 | 13 | 14 | 9.5 | 12 | 7.5 | 16 | 11.5 | 15 | 10.5 |
| 50 | 11 | 11.5 | 11.5 | 12 | 8.5 | 9 | 15.5 | 16 | 12 | 12.5 | 10 | 10.5 | 14 | 14.5 | 13 | 13.5 |
| 63 | 13.5 | 14.5 | 14 | 15 | 11 | 12 | 18 | 19 | 14.5 | 15.5 | 12.5 | 13.5 | 16.5 | 17.5 | 15.5 | 16.5 |


[^0]:    * Lead wire length symbols: 0.5 m .... Nil (Example) Y59A
    $3 \mathrm{~m} . . . . \mathrm{L}$ (Example) Y59AL
    $5 \mathrm{~m} . . . . \mathrm{Z}$ (Example) Y59AZ

[^1]:    For one-touch fittings and tubing, refer to SMC's "Best Pneumatics vol. 4" catalog.

[^2]:    I

    Note 1) ISO 4414 : Pneumatic fluid power - Recommendations for the application of equipment to transmission and control systems.
    Note 2) JIS B 8370 : General Rules for Pneumatic Equipment

