Линейный привод с шаговым электродвигателем

Серия LX

Компактный линейный электрический привод короткого хода с направляющими качения и скольжения.

- Точность позиционирования $\pm 0.03 \sim 0.05$ мм
- Использование шагового двигателя в стандартном исполнении
- Возможно использование с серводвигателем
- Максимальная скорость: 400 мм/с
- Стандартный ход от 25 до 400 мм
- Возможно исполнение с тормозом двигателя
- Возможно исполнение со встроенным датчиком конечного положения

Примеры применения

Линейный привод с шаговым злектродвигателем

Серия LXF - с линейной направляющей

Модель	Исполнение	Допустимая нагрузка (кг)	Макс. скорость (мм/с)	Точность позиционирования (мм)	Исполнение винтовой пары	Стандартный ход (мм)	Диапазон рабочих температур $\left({ }^{\circ} \mathrm{C}\right)$
LXH5SB-I-Q	Без тормоза	2	200	± 0.05	Подшипник скольжения	25,50,75, 100	5~40
LXH5BC-L-Q			30	± 0.03	Подшипник качения		(не допускать
LXH5BD-I-Q			80				конденсации)
LXH5SA-I-Q			100	± 0.05	Подшипник скольжения		

Серия LXP - с подшипником качения

Компания SMC сохраняет за собой право на внесение технических и размерных изменений

Модель	Исполнение	Допустимая нагрузка (кг)	Макс. скорость (мм/с)	Точность позиционирования (мм)	Исполнение винтовой пары
LXP5SB-D-Q	Без тормоза	2	200	± 0.05	Подшипник скольжения
LXP2 SB-I-Q		3	200		
LXP5SA-C-Q		4	100		
LXP2BC-I-Q		6	30	± 0.03	Подшипник качения
LXP5BC-I-Q					
LXP2BD-C-Q			80		
LXP5BD-D-Q					
LXP2SA-D-Q			100	± 0.05	Подшипник скольжения
LXP5SB-D-B-Q	С тормозом двигателя	2	200	± 0.05	Подшипник скольжения
LXP2SB-D-B-Q		3	200		
LXP5SA-C-B-Q		4	100		
LXP2BC-I-B-Q		5	30	± 0.03	Подшипник качения
LXP5BC-I-B-Q					
LXP2BD-D-B-Q			80		
LXP5BD-D-B-Q					
LXP5SA-C-B-Q			100	± 0.05	Подшипник скольжения

Стандартный ход (мм)	Диапазон рабочих температур $\left({ }^{\circ} \mathrm{C}\right)$
$25,50,75$, $100,125,150$,	$5 \sim 40$ (не допускать конденсации)

Линейный привод с шаговым злектродвигателем
LX

Серия LXS - каретка с направляющими высокой жесткости

Модель	Исполнение	Допустимая нагрузка (кг)	Макс. скорость (мм/с)	Точность позиционирования (мм)	Исполнение винтовой пары	Стандартный ход (мм)	Диапазон рабочих температур $\left({ }^{\circ} \mathrm{C}\right)$
LXS5SB-I-Q	Без тормоза	3	200	± 0.05	Подшипник скольжения	$\begin{aligned} & 25,50,75 \\ & 100,125,150 \end{aligned}$	5~40 (не допускать конденсации)
LXS2SB-I-Q		4.5	200				
LXS5SA-D-Q		6	100				
LXS2SA-D-Q		9	100				
LXS5BC-L-Q		10	30	± 0.03	Подшипник качения		
LXS2BC-I-Q							
LXS5BD-I-Q			80				
LXS2BD-I-Q							
LXS5SB-I-B-Q	С тормозом двигателя	1	200	± 0.05	Подшипник скольжения		
LXS2SB-I-B-Q		2	200				
LXS5SA-I-B-Q			100				
LXS2SA-I-B-Q		4	100				
LXS5BC-I-B-Q		5	30	± 0.03	Подшипник качения		
LXS2BC-I-B-Q							
LXS5BD-I-B-Q			80				
LXS2BD-D-B-Q							

Серия LX-112F
Линейный электрический привод с направляющей качения, длина хода до 400 мм.

Модель	Исполнение	Допустимая нагрузка (кг)		Макс. скорость (мм/с)	Точность позиционирования (мм)	Исполнение винтовой пары	Стандартный ход (мм)	Диапазон рабочих температур $\left({ }^{\circ} \mathrm{C}\right)$
		Гориз.	Верт.					
LX-112A-पBE	С тормозом, без тормоза двигателя	7	3	170	± 0.03	Подшипник качения	$\begin{aligned} & 50,100,150, \\ & 200,250,300, \\ & 350,400 \end{aligned}$	$5 \sim 40$ (не допускать конденсации)
LX-112A-पBF		7	2	260				
LX-112A-पBG		7	1	400				

Для управления шаговым двигателем необходимо использовать драйвер
(заказывается отдельно).

Модель драйвера	Линейный привод		Тип мотора
LC6D-220AD	С подшипником качения	LXPB2	2-фазный шаговый двигатель
	С направляющими высокой жесткости	LXSH2	
LC6D-507AD	С линейной направляющей	LXFH5	5-фазный шаговый двигатель
	С направляющими высокой жесткости	LXSH5	
	С подшипником качения	LXPB5	

Uniaxial Electric Actuator

SeriesLJ1

Slide screw for horizontal mounting and brake for vertical mounting have been added to the high rigidity linear guide /series LJ1H Dedicated teaching box newly released

High positioning accuracy is achi

Linear and slider guides with 3 types of feed screws

Linear guide Series LJIH

LJ1H10

LJ1H20, 30

Ball screw

Positioning repeatability $\pm 0.02 \mathrm{~mm}$ (ground ball screw) $\pm 0.05 \mathrm{~mm}$
(rolled ball screw)

Abundant product variations

- Without motor, can be supplied with specified motor
- Stepping motor, also compatible with DC motor
- Full range of options such as

TSUBAKICABLEVEYOR ${ }^{\circledR}$
Note) TSUBAKICABLEVEYOR ${ }^{\circledR}$ is a registered trade mark of the TSUBAKIMOTO CHAIN CO.

Completely flat top surface

Improves freedom in mounting of work pieces.

With the slider guide, slide screw type, low drive noise of 47 dB or less is possible

(LJ1S Series only)	
Model	Noise level (dB)
LJ1S $\square \square \square \square \square$	47 or less
LJ1H $\square \square \square \square P \square$	60 or less
LJ1H $\square \square \square \square \mathrm{N} \square$	61 or less
LJ1H $\square \square \square \square S \square$	50 or less

Higher rigidity

Higher rigidity has been realized by using an aluminum hollow box structure for the body.

Model		Moment of inertia of area		W	H
		Ix	Ir		
Linear guide	LJ1H10 \square^{\square}	7	48	70	24.7
	LJ1H20口]	40	374	122	44.8
	LJ1H30■ \square	84	836	151	55
Slider guide	LJ1S10 \square^{\square}	15	52	70	36
	LJ1S20 \square	60	402	122	56.3
	LJ1S30■	177	1000	151	73.3

2 types of mounting are possible to improve mounting of the unit.

Features 1

rigidity and high linear precision.

eved with an AC servomotor and feed screw.

Table running accuracy

	Model	Running accuracy	
		C plane to A plane	D plane to B plane
	LJ1H10	0.07 or less	0.07 or less
\bigcirc	LJ1H20	0.06 or less	0.03 or less
	LJ1H30	0.03 or less	0.09 or less
	LJ1S10	0.015 or less	0.12 or less
	LJ1S20	0.1 or less	0.1 or less
	LJ1S30	0.1 or less	0.1 or less

Low cost

The high rigidity direct acting guide costs approximately 30% less than the ball screw type (SMC product comparison).
(LJ1S Series only)

Actuator control

- Absolute and incremental movement commands are provided. Speed and acceleration settings also are unresricted.
- Home position return direction is selectable.

Operation from the teaching box

- Programming and parameters: can be operated like a PC. (Can perform operation, monitoring, alarm reset, etc.)

Program capacity

- 127 steps x 8 programs: ensures sufficient program capacity. Linking is possible with jumps and subroutine calls, etc.

Controller with

 built-in driver- Space saving: size reduction achieved by improved mounting efficiency. Having all top mounting connectors also saves space.
- Light weight 2.2kg: weight reduction achieved by omitting transformer.

General-purpose input/output control

- 6 each generalpurpose input/output ports: control of valves and auto switches, etc. is possible with 6 points + 6 points of generalpurpose input/output ports.

$$
\begin{aligned}
& \text { Dediciated Controller } \\
& \text { Series LC1 }
\end{aligned}
$$

Operation from external input

- Can be operated from external input by using a 24 V power supply: execution of program batches and step units (movement commands only) can be combined.
2

Programming from a PC

- Programming and start-up: easy programming is possible by means of the PC software's matrix editor.
- Program test function: program testing can be done safely by applying limits to the program. (single step, I/O cancel, override)
- Forced output function (test): forced output operation can be performed without relying on the program. Valid for confirmation of connections and operation.

Series LJ1
Electric Actuator
Series Variations

[^0]Features 3

Table of Contents

Individual models	Applicable controller model	Options		
		$\begin{gathered} \text { Cover with } \\ \text { switch } \\ \text { grooves } \end{gathered}$	CABLEVEYOR®	Dust seal
LJ1H101 \square PB- \qquad LJ1H101 ${ }^{\text {N }}$ B- \qquad	LC1-1B1H \square			
LJ1H101 \square SC- \square	LC1-1B1M \square			
LJ1H102 \square NH- \qquad LJ1H102 \square PB- \qquad K LJ1H102 \square NB- \qquad K	LC1-1B1V \square	\bigcirc	\bigcirc	
LJ1H202 \square PA- \square LJ1H202 \square NA- \square LJ1H202 \square PC- \square LJ1H202 \square NC- \square	LC1-1B2H \square			
LJ1H202■SC- \square	LC1-1B2M \square	\bigcirc	\bigcirc	\bigcirc
LJ1H202 \square PF- \square LJ1H202 \square NF- \qquad K LJ1H202 \square PA- \square K LJ1H202 \quad NA- \qquad K	LC1-1B2V \square			
LJ1H303 \square PD LJ1H303 \square ND	LC1-1B3H \square			
LJ1H303 \square SE- \square	LC1-1B3M \square	-	\bigcirc	\bigcirc
LJ1H303 \square PA- \square K LJ1H303 \square NAK \square	LC1-1B3V \square			
LJ1S101 \square SC- \square	LC1-1B1S \square	-	\bigcirc	
LJ1S202 \square SC- \square	LC1-1B2S \square	-	\bigcirc	O
LJ1S303 \square SC- \square	LC1-1B3S \square	\bigcirc	\bigcirc	-

Selection Procedure Feature 5
Basic Configuration Examples Feature 6
Allowable Dynamic Moment Feature 7, 8
Safety Instructions P. 65
Actuator Precautions P.66, 67
Auto Switch Common Precautions. P.68, 69
Specific Product Precautions. P. 70
High Rigidity Direct Acting Guide LJ1H Series P. 1
LJ1H10 Series P.2~7
LJ1H20 Series. P. $8 \sim 13$
LJ1H30 Series P.14~19
Slider Guide LJ1S Series P. 21
LJ1S10 Series. P.22~27
LJ1S20 Series. P.28~33
LJ1S30 Series. P. 34~39
Option Specifications. P. 40,41
Motor Reference Data, Nonstandard Motors P.42~46
Order Made Specifications P. 47
Dedicated Controller LC1 Series P. 49
Typical Equipment Configurations P.50, 51
LC1 Series P.52~60
Dedicated Teaching Box
LC1 Series P. 61
LC1 Series. P.61, 62
LC1 Series Options P. 63
Catalog Terminology P. 64
LJ1, LC1 Inquiry Sheet P.71, 72

Series LJ1
 Electric Actuator Selection Procedure

Various operating conditions must be considered in order to select an electric actuator. The selection procedure is shown below.

* When mounted in a vertical position, selection is limited to ground ball screw and rolled ball screw.

© Caution

Vertical type is equipped with brake.
Since a regenerative absorbtion unit may be necessary depending on the operating conditions, a separate inquiry should be made.

Series LJ1

 Electric Actuator Basic Configuration Examples

Basic configuration (1) Can be operated with the electric actuator, dedicated controller, teaching box and $24 \mathrm{VDC}{ }^{\text {Note 1) }}$ power supply.
Basic configuration (2) Can be operated with the electric actuator, dedicated controller, controller setup software with PC and 24VDC power supply.
Can also be operated from a PLC ${ }^{\text {Note 2) }}$ or PC for external control.
Note 1) Because the contoller uses the emergency stop terminal corresponding to the B contact, 24VDC must be applied between the control terminals STOP and COM or operation will not be possible. See the instruction manual for further details.
Note 2) When operating from a PC, the controller setup software (option) is required.

Series LJ1

Electric Actuator

Allowable Dynamic Moment

The table is subjected to moment in various directions, depending on the work piece load point. Design should be such that the amount of work piece overhang stays within the ranges shown in the graphs below.

W: Work load (N)
$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$: Amount of overhang to work piece center of gravity (mm)
a: Table acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)

Use of graphs

1) Determine the model.
2) Determine the mounting position.

Confirm whether mounting is horizontal, lateral or vertical (LJ1H only).
3) Confirm the amount of overhang.

Operating conditions should be such that the work load and amount of overhang for each component of moment (pitching, yawing, rolling) fall within the ranges shown in the graphs.

Features 7

Electric Actuator Series LJ1

Deflection Data

The load and the amount of deflection at load point W are shown in the graphs below for each series.

Load point distance
Figure 1. Horizontal

Figure 2. Lateral

LJ1S10

LJ1H2O

	10000050000									
	$\begin{aligned} & 20000 \\ & 10000 \end{aligned}$			Horizon	nital load	ad 100				
				Horizon	nital load	930\%				
틀ᄃ응	5000									
	20001000			oad 100\%						
-			Lateral	10ad 50\%)		
	500				$\stackrel{ }{ }$	\%		-		
	200					8				
	100				,					
$\begin{aligned} & \text { O} \\ & \hline 0 \end{aligned}$	50									
	20									
E	10		${ }_{7}$							
	5		7	7						
O										
$\frac{E}{4}$			${ }_{7}$							
			7							
				x		onnale				$\begin{aligned} & \text { eflection } \\ & \text { fection } \\ & \hline \hline \end{aligned}$
		100	020	30	300	50	500			1000
Load point distance mm										

LJ1H30

LJ1S20

LJ1S30

Series LJ 7 H
 High Rigidity Direct Acting Guide

LJ1H10 Series 2
LJ1H20 Series P 8
LJ1H30 Series P14

Series LJIH10 Motor Output: 50/100W

How to Order

Table 1: Feed screw and stroke combinations

Model				Stroke (mm)									
				100	200	300	400	500	600	700	800	900	1000
	LJ1H101 \square PB-	Stroke		-	-	-	-	-					
	LJ1H101 \square NB-	Stroke		-	-	-	-	-					
	LJ1H101 \square SC-	Stroke		-	-	-	-	-	-	-	-	-	-
	LJ1H102 \square PH-	Stroke	K	-	-	-	-	-					
	LJ1H102 $\square \mathrm{NH}-$	Stroke	K	-	-	-	-	-					
	LJ1H102 \square PB-	Stroke	K	-	-	-	-	-					
	LJ1H102 \square NB-	Stroke	K	-	-	-	-	-					

[^1]
\triangle Caution

Note) Units equipped with brakes are for vertical mounting. Since a regenerative absorption unit may be necessary depending on the operating conditions, a separate inquiry should be made.

Specifications

Stroke					mm	100	200	300	400	500	600	700	800	900	1000					
Weight	Ball screw				kg	5.2	6.0	6.8	7.5	8.3	-									
	Slide screw				kg	5.3	6.2	7.2	8.0	8.8	9.7	10.5	11.3	12.2	13.0					
Operating temperature range					${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)														
Maximum work load	Horizontal specification	Ball screw	12 mm lead	50W	kg	10					-									
		Slide screw	20 mm lead			10														
	Vertical Note) specification	Ball screw	12 mm lead	100W		5					-									
			8 mm lead			10					-									
Maximum speed	Horizontal specification	Ball screw	12 mm lead	50W	mm/s	600					-									
		Ball screw	20 mm lead																	
	Vertical ${ }^{\text {Note) }}$ specification	Ball screw	12 mm lead	100W		600					-									
			8 mm lead			400					-									
Rated thrust	Horizontal specification	Ball screw	12 mm lead	50W	N	74					-									
		Slide screw	20 mm lead			24														
	Vertical Note) specification	Ball screw	12 mm lead	100W		150					-									
			8 mm lead			225					-									
Positioning repeatability	Ball screw	Rolled			mm	± 0.05					-									
		Ground				± 0.02					-									
	Slide screw	Rolled				± 0.1														
Motor output	Horizontal specification					AC servomotor (50W)														
	Vertical specification ${ }^{\text {Note) }}$					AC servomotor (100W)					-									
Encoder						Incremental system														
Feed screw	Horizontal specification	Ball screw	Rolled			$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead					-									
			Ground								-									
		Slide screw	Rolled			ø20mm, 20 mm lead														
	Vertical Note) specification	Ball screw	Rolled			$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead 8 mm lead					-									
			Ground																	
Guide						High rigidity direct acting guide														
Electromagnetic brake	Specifications					Deenergized operation type Rated voltage 24 V					-									
								-												
	Holding torqu				Nm						0.4					-				

[^2]
Series LJ1H10

Dimensions
Scale: 15\%

T-slot dimensions ${ }^{\text {Note) }}$

Dimension table/without brake

(mm)

Model	Stroke	A	B	C	D	E	F
LJ1H101 $\square \square \square-100-\square \square$	100	225	245	460	201	192	43
LJ1H101 $\square \square \square-200-\square \square$	200	325	345	560	201	192	43
LJ1H101 $\square \square \square-\mathbf{3 0 0}-\square \square$	300	425	445	660	201	192	43
LJ1H101 $\square \square \square-\mathbf{4 0 0}-\square \square$	400	525	545	760	201	192	43
LJ1H101 $\square \square \square-500-\square \square$	500	625	645	860	201	192	43
LJ1H101 \square SC-600 - $\square \square$	600	725	745	960	201	192	43
LJ1H101 \square SC-700 - \square	700	825	845	1060	201	192	43
LJ1H101 \square SC-800 - $\square \square$	800	925	945	1160	201	192	43
LJ1H101 \square SC-900- \square	900	1025	1045	1260	201	192	43
LJ1H101 \square SC-1000- \square	1000	1125	1145	1360	201	192	43

Dimension table/with brake

LJ1H102 $\square \square \square-100 K-\square \square$	100	225	245	507	217	208	74
LJ1H102 $\square \square \square-200 K-\square \square$	200	325	345	607	217	208	74
LJ1H102 $\square \square \square-300 K-\square \square$	300	425	445	707	217	208	74
LJ1H102 $\square \square \square-400 K-\square \square$	400	525	545	807	217	208	74
LJ1H102 $\square \square \square-500 K-\square \square$	500	625	645	907	217	208	74

[^3]
Construction

With brake

Parts list/Main parts

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	$50 \mathrm{~W} / 100 \mathrm{~W}$
$\mathbf{2}$	Feed screw	-	Ball screw/Slide screw
$\mathbf{3}$	High rigidity direct acting guide	-	
$\mathbf{4}$	Coupling	-	
$\mathbf{5}$	Bearing R	-	
6	Bearing F	-	
$\mathbf{7}$	Frame A	Aluminum alloy	
$\mathbf{8}$	Table	Aluminum alloy	
9	Housing A	Aluminum alloy	
$\mathbf{1 0}$	Housing B	Aluminum alloy	
$\mathbf{1 1}$	Top cover		

Parts list/Main parts

No.	Description	Material	Note
12	Side cover	Aluminum alloy	
13	Housing cover	Aluminum alloy	
14	Sensor rail	Aluminum alloy	
15	Bumper	IIR	
16	End cover A	PC	
17	End cover B	PC	
18	Inner cover	PC	
19	Motor cover	PC	
20	Auto switch	-	
21	Magnet	Rare earth magnet	
22	Brake	-	

How to Order

Bottom entry

Table 1: Feed screw and stroke combinations

Model			Stroke (mm)									
			100	200	300	400	500	600	700	800	900	1000
	LJ1H10 $\square 1 \square$ PB- Stroke		-	-	-	-	-					
	LJ1H10 $\square 1 \square$ NB- Stroke		-	-	-	-	-					
	LJ1H10 $\square 1 \square$ SC- Stroke		-	-	-	-	-	-	-	-	-	-
	LJ1H10 \square 2 \square PH- Stroke	K	-	-	-	-	-					
	LJ1H10 \square 2 \square NH- Stroke	K	-	-	-	-	-					
	LJ1H10 \square 2 \square PB- Stroke	K	-	-	-	-	-					
	LJ1H10 \square 2 \square NB- Stroke	K	-	-	-	-	-					

Please note that combinations other than those shown above cannot be produced.

Refer to page 4 for dimensions.

\triangle Caution

Note 2) Units equipped with brakes are for vertical mounting. Since a regenerative absorption unit may be necessary depending on the operating conditions, a

Specifications

Stroke					mm	100	200	300	400	500	600	700	800	900	1000
Weight (without motor)	Ball screw				kg	4.8	5.6	6.4	7.1	7.9	-				
	Slide screw				kg	4.9	5.8	6.8	7.6	8.4	9.3	10.1	10.9	11.8	12.6
Operating temperature range					${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
Maximum work load	Horizontal specification	Ball screw	12 mm lead	50W	kg	10					-				
		Slide screw	20 mm lead												
	Vertical ${ }^{\text {Note 1) }}$ specification	Ball screw	12 mm lead	100W		5					-				
			8 mm lead			10					-				
Maximum speed	Horizontal specification	Ball screw	12 mm lead	50W	mm/s	600					-				
		Slide screw	20 mm lead												
	Vertical ${ }^{\text {Note 1) }}$ specification	Ball screw	12 mm lead	100W		600					-				
			8 mm lead			400					-				
Feed screw	Horizontal specification	Ball screw	Rolled			ø12mm, 12mm lead					-				
			Ground								-				
		Slide screw	Rolled			ø20mm 20 mm lead									
	Vertical ${ }^{\text {Note 1) }}$ specification	Ball screw	Rolled			$\varnothing 12 \mathrm{~mm}, 12 \mathrm{~mm}$ lead 8 mm lead					-				
			Ground												
Guide						High rigidity direct acting guide									
Electromagnetic brake	Specifications					Deenergized operation type Rated voltage 24V					-				
	Holding torque				Nm	0.4					-				
Limit switch ${ }^{\text {Note 2) }}$	Specifications					Power supply voltage: 4.5 to 28 VDC Current consumption: 12 mA or less Control output: Open collector, maximum load current 150 mA									

© Caution

Note 1) Since the maximum work load for vertical specifications is influenced by the regenerative power throughput of the drive, this should be reviewed carefully.
Note 2) Refer to the drawing below for the internal circuitry of the limit switch.

Nonstandard Compatible Motors: The following motors can be mounted when specified.

	Motor output (W)	Power supply voltage (AC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., LTD	50	100/115	MSM5AZP1A	MSD5A1P1E
		200/230		MSD5A3P1E
	100	100/115	MSM011P1A	MSD011P1E
		200/230	MSM012P1A	MSD013P1E
Mitsubishi Electric Corporation	50	100/115	HC-PQ053	MR-C10A1
		200/230		MR-C10A
	100	100/115	HC-PQ13	MR-C10A1
		200/230		MR-C10A
Yaskawa Electric Corporation	50	100/115	SGME-A5BF12	SGDE-A5BP
		200/230	SGME-A5AF12	SGDE-A5AP
	100	100/115	SGME-01BF12	SGDE-01BP
		200/230	SGME-01AF12	SGDE-01AP

Limit Switch Internal Circuit

D-Y59AL-232

* Refer to the motor compatibility table on page 42 when specified without motor.
* Compatible motors for horizontal operation are 50W only, and for vertical operation 100W only.

For the dimensions of the motor mounting area, refer to the dimensions for Series LJ1 ${ }_{\mathrm{S}}^{\mathrm{H}} 10$ on page 43.
These may be used for reference during design and assembly.

* For detailed driver specifications, etc., inquiries should be directed to the respective motor manufacturers.

Series LJIVH2O Motor Output:100W

How to Order

Table 1: Feed screw and stroke combinations

	Model						Strok	(mm)					
	Model		100	200	300	400	500	600	700	800	900	1000	1200
	LJ1H202 \square PA-Stroke		-	-	-	-	-	-					
	LJ1H202 \square NA-Stroke		-	-	-	-	-	-					
을	LJ1H202 \square PC-Stroke						-	-	-	-	-	-	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$	LJ1H202■NC-Stroke						-	-	-	-	-	-	
$\stackrel{0}{0}$	LJ1H202 \square SC-Stroke		-	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} & 0 \\ & 3 \\ & 3 \end{aligned}$	LJ1H202 \square PF-Stroke	K	-	-	-	-	-	-					
0	LJ1H202■NF-Stroke	K	-	-	-	-	-	-					
	LJ1H202 \square PA-Stroke	K	-	-	-	-	-	-					
	LJ1H202 \square NA-Stroke	K	-	-	-	-	-	-					

Please note that combinations other than those shown above cannot be produced.
\triangle Caution
Note) Units equipped with brakes are for vertical mounting. Since a regenerative absorption unit may be necessary depending on the operating conditions, a separate inquiry should be made.

Specifications

\triangle Caution

Note) Since a regenerative absorption unit may be necessary for vertical specifications, a separate inquiry should be made.

Series LJ1H20

Dimensions

T-slot dimensions ${ }^{\text {Note) }}$

Dimension table/without brake

Model	Stroke	A	B	C	D	E	F	G
LJ1H202 $\square \square \square$ - 100 - $\square \square$	100	250	316	132	462	200	190	22
LJ1H202 $\square \square \square-200-\square \square$	200	350	416	232	562	200	190	22
LJ1H202 $\square \square \square$ - $300-\square \square$	300	450	516	332	662	200	190	22
LJ1H202 $\square \square \square$ - $400-\square \square$	400	550	616	432	762	200	190	22
LJ1H202 $\square \square \square-500-\square \square$	500	650	716	532	862	200	190	22
LJ1H202 $\square \square \square-600-\square \square$	600	750	816	632	962	200	190	22
LJ1H202 $\square \square$ C- $700-\square \square$	700	859	916	732	1062	192	177	26
LJ1H202 $\square \square$ C- $800-\square \square$	800	959	1016	832	1162	192	177	26
LJ1H202 $\square \square$ C- $900-\square \square$	900	1059	1116	932	1262	192	177	26
LJ1H202 $\square \square \mathbf{C - 1 0 0 0 - \square \square ~}$	1000	1159	1216	1032	1362	192	177	26
LJ1H202 \square SC -1200- $\square \square$	1200	1359	1416	1232	1562	192	177	26

Dimension table/with brake

LJ1H202 $\square \square \square-100 K-\square \square$	100	250	316	132	493	200	190	53
LJ1H202 $\square \square \square-200 K-\square \square$	200	350	416	232	593	200	190	53
LJ1H202 $\square \square-$-300K- \square	300	450	516	332	693	200	190	53
LJ1H202 $\square \square \square-400 K-\square \square$	400	550	616	432	793	200	190	53
LJ1H202 $\square \square \square-500 K-\square \square$	500	650	716	532	893	200	190	53
LJ1H202 $\square \square \square-600 K-\square$	600	750	816	632	993	200	190	53

Note) The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting equipment.
When mounting the body unit, $\mathrm{M} 6 \times(30+\alpha$, α : effective thread length of the actuator mounting platform) bolts are required
When mounting using the T-slots on the actuator, special T-nuts are required. Refer to "Options" on page 40.

With brake

Parts list/Main parts

No.	Description	Material	Note
12	Side cover	Aluminum alloy	
13	Bearing retainer	Aluminum alloy	
14	Bumper	IIR	
15	End cover A	PC	
16	End cover B	PC	
17	Inner cover	PC	
18	Motor cover R	PC	
19	Motor cover L	PC	
20	Auto switch	-	
21	Magnet	Rare earth magnet	
22	Brake	-	

How to Order

Table 1: Feed screw and stroke combinations

Model			Stroke (mm)										
			100	200	300	400	500	600	700	800	900	1000	1200
	LJ1H20 \square 2 \square PA- Stroke		-	-	-	-	-	-					
	LJ1H20 \square 2 \square NA- Stroke		-	-	-	-	-	-					
	LJ1H20 \square 2 \square PC- Stroke						-	\bullet	\bullet	\bullet	\bullet	-	
	LJ1H20 \square 2 \square NC- Stroke						-	-	-	-	-	-	
	LJ1H20 \square 2 \square SC- Stroke		-	-	-	-	-	-	-	-	-	-	-
	LJ1H20 \square 2 \square PF- Stroke	K	-	-	-	-	-	-					
	LJ1H20 \square 2 \square NF- Stroke	K	-	-	-	-	-	\bullet					
	LJ1H20 \square 2 \square PA- Stroke	K	-	-	-	-	-	-					
	LJ1H20 \square 2 \square NA- Stroke	K	-	\bullet	-	-	\bullet	-					

[^4]\triangle Caution
Note 2) Units equipped with brakes are for vertical mounting. Since a regenerative absorption unit may be necessary depending on the operating conditions, a separate inquiry should be made.

Specifications

Stroke					mm	100	200	300	400	500	600	700	800	900	1000	1200
Weight (without motor)	Ball screw				kg	7.2	8.4	9.6	10.7	12.1	13.2	14.4	15.6	16.8	18.0	-
	Slide screw				kg	7.5	8.5	9.6	10.8	12.3	13.8	16.3	16.8	18.6	20.4	24.2
Operating temperature range					${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
Maximum work load	Horizontal specification	Ball screw	10 mm lead	100W	kg	30						-				
			20 mm lead			-				30						-
		Slide screw	20 mm lead			15										
	Vertical ${ }^{\text {Noe 1 1) }}$ specification	Ball screw	5 mm lead			15						-				
			10 mm lead			8						-				
Maximum speed	Horizontal specification	Ball screw	10 mm lead	100W	mm / s	500						-				
			20 mm lead							10		930	740	600	500	-
		Slide screw	20 mm lead									0				
	Vertical ${ }^{\text {Noie 1) }}$ specification	Ball screw	5 mm lead			250						-				
			10 mm lead			500						-				
Feed screw	Horizontal specification	Ball screw	Rolled, Ground			$\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead						-				
												mm,	0 mm	lead		-
		Slide screw	Rolled			$\varnothing 20 \mathrm{~mm}, 20 \mathrm{~mm}$ lead										
	Vertical ${ }^{\text {Noie 1) }}$ specification	Ball screw	Rolled, Ground			$\varnothing 16 \mathrm{~mm}, 5 \mathrm{~mm}$ lead $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead						-				
Guide						High rigidity direct acting guide										
Electromagnetic brake	Specifications					Deenergized operation type Rated voltage 24 V						-				
	Holding torque				Nm	0.4						-				
Limit switch ${ }^{\text {Note 2) }}$	Specifications					Power supply voltage: 4.5 to 28 VDC Current consumption: 12 mA or less Control output: Open collector, maximum load current 150 mA										

\triangle Caution

Note 1) Since the maximum work load for vertical specifications is influenced by the regenerative power throughput of the drive, this should be reviewed carefully.
Note 2) Refer to the drawing below for the internal circuitry of the limit switch.

Nonstandard Compatible Motors: The following motors can be mounted when specified.

	Motor output (W)	Power supply voltage (AC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., LTD	100	100/115	MSM011P1A	MSD011P1E
		200/230	MSM012P1A	MSD013P1E
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1
		200/230		MR-C10A
Yaskawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP
		200/230	SGME-01AF12	SGDE-01AP

* Refer to the motor compatibility table on page 42 when specified without motor.

For the dimensions of the motor mounting area, refer to the dimensions for Series $\mathrm{LJ} 1 \mathrm{~S}_{\mathrm{S}}^{\mathrm{H}} 20$ on page 43. These may be used for reference during design and assembly.

* For detailed driver specifications, etc., inquiries should be directed to the respective motor manufacturers.

Limit Switch Internal Circuit

Series LJIH30 Motor Output: 200W

How to Order

Table 1: Feed screw and stroke combinations

Please note that combinations other than those shown above cannot be produced.

\triangle Caution

Note) Units equipped with brakes are for vertical mounting. Since a regenerative absorption unit may be necessary depending on the operating conditions, a separate inquiry should be made.

Specifications

Stroke					mm	200	300	400	500	600	800	1000	1200	1500					
Weight	Ball screw				kg	16.0	18.0	20.0	22.0	24.0	28.5	33.0	37.0	43.0					
	Slide screw				kg	14.9	17.0	19.0	21.1	23.2	27.3	31.5	35.6	41.9					
Operating temperature range					${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)													
Maximum work load	Horizontal specification	Ball screw	25 mm lead	200W	kg	60													
		Slide screw	40 mm lead			30													
	Vertical Note 1) specification	Ball screw	10 mm lead					20											
Maximum speed ${ }^{\text {Note 2) }}$	Horizontal specification	Ball screw	25 mm lead	200W	mm/s	1000							700	500					
		Slide screw	40mm lead			500													
	Vertical Note 1) specification	Ball screw	10 mm lead					500											
Rated thrust	Horizontal specification	Ball screw	25 mm lead	200W	N	144													
		Slide screw	40mm lead			50													
	Vertical Note 1) specification	Ball screw	10 mm lead					60											
Positioning repeatability	Ball screw	Rolled			mm	± 0.05													
		Ground				± 0.02													
	Slide screw	Rolled				± 0.1													
Motor output	Horizontal specification					AC servomotor (200W)													
	Vertical specification ${ }^{\text {Note 1) }}$					AC servomotor (200W)													
Encoder						Incremental system													
Feed screw	Horizontal specification	Ball screw	Rolled			ø25mm, 25 mm lead													
			Ground																
		Slide screw	Rolled			ø30mm, 40mm lead													
	Vertical Note 1) specification	Ball screw	Rolled			ø20mm, 10 mm lead				-									
			Ground							-									
Guide						High rigidity direct acting guide													
Electromagnetic brake	Specifications					Deenergized operation type Rated voltage 24VDC					-								
							-												
	Holding torque				Nm						1.0					-			

Caution
Note 1) Since a regenerative absorption unit may be necessary for vertical specifications, a separate inquiry should be made.
Note 2) Since there is a speed limitation based on the load weight even in the case of a horizontal actuator, refer to the table below.
(Table) Maximum speed for each load weight
Unit (mm/s)

Model	Load weight (N)						Note
	100	200	300	400	500	600	
LJ1H3031 \square D-200 to 1000- $\square \square$	1000	1000	1000	1000	900	800	Power supply 100/110(V) $\pm 10 \%$ Compatible controller LC1-1B3H1- \square
LJ1H3031DD-1200- $\square \square$	700	700	700	700	700	700	
LJ1H3031-D-1500- $\square \square$	500	500	500	500	500	500	
LJ1H3032-D-200 to 1000- $\square \square$	1000	900	800	700	650	600	Power supply 200 (V) $\pm 10 \%$ Compatible controller LC1-1B3H2-
LJ1H3032-D-1200-■	700	700	700	700	650	600	
LJ1H3032 \square D-1500- $\square \square$	500	500	500	500	500	500	

[^5]
Series LJ1H30

Dimensions

T-slot dimensions ${ }^{\text {Note) }}$

Dimension table/without brake

(mm)

Model	Stroke	A	B	C	D
LJ1H303 $\square \square \square-\mathbf{2 0 0}-\square \square$	200	404	297	630	31.5
LJ1H303 $\square \square \square-\mathbf{3 0 0}-\square \square$	300	504	397	730	31.5
LJ1H303 $\square \square \square-\mathbf{4 0 0}-\square \square$	400	604	497	830	31.5
LJ1H303 $\square \square \square-\mathbf{5 0 0}-\square \square$	500	704	597	930	31.5
LJ1H303 $\square \square \square-\mathbf{6 0 0}-\square \square$	600	804	697	1030	31.5
LJ1H303 $\square \square \square-\mathbf{8 0 0}-\square \square$	800	1004	897	1230	31.5
LJ1H303 $\square \square \square-1000-\square \square$	1000	1204	1097	1430	31.5
LJ1H303 $\square \square \square \mathbf{- 1 2 0 0 - \square \square}$	1200	1404	1297	1630	31.5
LJ1H303 $\square \square \square \mathbf{- 1 5 0 0 - \square \square}$	1500	1704	1597	1930	31.5

Dimension table/with brake

LJ1H303 $\square \square$ A-200K- $\square \square$	200	404	297	661	62.5
LJ1H303 $\square \square$ A-300K- \square	300	504	397	761	62.5
LJ1H303 $\square \square$ A-400K- \square	400	604	497	861	62.5
LJ1H303 $\square \square$ A-500K- $\square \square$	500	704	597	961	62.5
LJ1H303 $\square \square$ A-600K- $\square \square$	600	804	697	1061	62.5

Note) The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting equipment.
When mounting the body unit, M8 $\times(30+\alpha, \alpha$: effective thread length of the actuator mounting platform) bolts are required.
When mounting using the T-slots on the actuator, special T-nuts are required. Refer to "Options" on page 40.

With brake

View A-A'

Parts list/Main parts

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	200 W
$\mathbf{2}$	Feed screw	-	Ball screw/Slide screw
$\mathbf{3}$	High rigidity direct acting guide	-	
$\mathbf{4}$	Coupling	-	
5	Bearing R	-	
6	Bearing F	-	
$\mathbf{7}$	Body A	Aluminum alloy	
8	Table	Aluminum alloy	
9	Housing A	Aluminum alloy	
$\mathbf{1 0}$	Housing B	Aluminum alloy	
11	Top cover		

Parts list/Main parts

No.	Description	Material	Note
12	Side cover	Aluminum alloy	
13	Bearing retainer	Carbon steel	Kanigen plated
14	Bumper	IIR	
15	End cover A	PC	
16	End cover B	PC	
17	Inner cover	PC	
18	Motor cover A	PC	
19	Motor cover B	PC	
20	Auto switch	-	
21	Magnet	Rare earth magnet	
22	Brake	-	

How to Order

Table 1: Feed screw and stroke combinations

							oke (m				
	Model		200	300	400	500	600	800	1000	1200	1500
	LJ1H30 \square 3 \square PD-Stroke		-	-	-	-	-	-	-	-	-
$\stackrel{\rightharpoonup}{0}$	LJ1H30 \square 3 \square ND-Stroke		-	-	-	-	-	-	-	-	-
$\stackrel{\stackrel{\rightharpoonup}{E}}{0}$	LJ1H30 \square 3 \square SE-Stroke		-	-	-	-	-	-	-	-	-
3	LJ1H30 \square 3 \square PA-Stroke	K	-	-	-	-	-				
\%	LJ1H30 \square 3 \square NA-Stroke	K	-	-	-	-	-				

[^6]Refer to page 16 for dimensions.

\triangle Caution

Note 2) Units equipped with brakes are for vertical mounting. Since a regenerative absorption unit may be necessary depending on the operating conditions, a separate inquiry should be made.

Specifications

Stroke					mm	200	300	400	500	600	800	1000	1200	1500					
Weight (without motor)	Ball screw				kg	14.9	16.9	18.9	20.9	22.9	27.4	31.9	35.9	41.9					
	Slide screw				kg	13.8	15.9	17.9	20	22.1	26.2	30.4	34.5	40.8					
Operating temperature range					${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)													
Maximum work load	Horizontal specification	Ball screw	25 mm lead	200W	kg	60													
		Slide screw	40 mm lead			30													
	Vertical Note 1) specification	Ball screw	10 mm lead			20					-								
Maximum speed ${ }^{\text {Note 3) }}$	Horizontal specification	Ball screw	25 mm lead	200W	mm / s	1000							700	500					
		Slide screw	40 mm lead			500													
	Vertical Note 1) specification	Ball screw	10 mm lead			500					-								
Motor output	Horizontal specification					AC servomotor (200W)													
	Vertical specification ${ }^{\text {Note 1) }}$					AC servomotor (200W)													
Encoder						Incremental system													
Feed screw	Horizontal specification	Ball screw	Rolled			ø25mm, 25 mm lead													
			Ground																
		Slide screw	Rolled			ø30mm, 40mm lead													
	Vertical ${ }^{\text {Note 1) }}$ specification	Ball screw	Rolled			ø20mm, 10 mm lead					-								
			Ground								-								
Guide						High rigidity direct acting guide													
Electromagnetic brake	Specifications					Deenergized operation type Rated voltage 24 V					-								
	Holding torque				Nm						1.0					-			
Limit switch	Specifications					Power supply voltage: 4.5 to 28VDC Current consumption: 12 mA or less Control output: Open collector, maximum load current 150 mA													

Caution

Note 1) Since the maximum work load for vertical specifications is influenced by the regenerative power throughput of the drive, this should be reviewed carefully.
Note 2) Refer to the drawing below for the internal circuitry of the limit switch.
Note 3) Since the maximum speed may be limited by the work load, a separate inquiry should be made.

Nonstandard Compatible Motors: The following motors can be mounted when specified.

	Motor output (W)	Power supply voltage (AC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., LTD	200	$100 / 115$	MSM021P1A	MSD021P1E
Mitsubishi Electric Corporation		MSM022P1A	MSD023P1E	
Yaskawa Electric Corporation	200	$100 / 115$	HC-PQ23	MR-C20A1
	$200 / 230$	$100 / 115$		SGDE-C20A
	$200 / 230$	SGME-02AF12	SGDE-02AP	

Limit Switch Internal Circuit

D-Y59AL-232

[^7]
Series LJ J S

 Slider Guide
LJ1S10 Series P22
LJ1S20 Series P28
LJ1S30 Series P34

Series LJISS10 Motor Output: 50W

How to Order

Please make separate inquiry regarding combinations with ball screw and a special slider guide, which can also be arranged in addition to the above.

Stroke		mm	100	200	300	400	500	600	700	800	900	1000
Weight		kg	5.4	6.1	6.9	7.7	8.5	9.3	10.0	10.8	11.6	12.4
Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (With no condensation)									
Maximum work load		kg	5									
Maximum speed		mm/s	300									
Rated thrust		N	24									
Positioning repeatability		mm	± 0.1									
Motor output			AC servomotor (50W)									
Encoder			Incremental system									
Feed screw	Rolled slide screw		$\varnothing 20 \mathrm{~mm}, 20 \mathrm{~mm}$ lead									
Guide			Slider guide									

Series LJS10

Dimensions
Scale: 15\%

T-slot dimensions Note)

Dimension table

Model	Stroke	A	B	C
LJ1S101 \square SC- 100- $\square \square$	100	225	245	460
LJ1S101 \square SC- 200- \square	200	325	345	560
LJ1S101 \square SC- 300- $\square \square$	300	425	445	660
LJ1S101 \square SC- 400- $\square \square$	400	525	545	760
LJ1S101 \square SC- 500- \square	500	625	645	860
LJ1S101 \square SC- 600- $\square \square$	600	725	745	960
LJ1S101 \square SC- 700- \square	700	825	845	1060
LJ1S101 \square SC- 800- \square	800	925	945	1160
LJ1S101 \square SC- 900- $\square \square$	900	1025	1045	1260
LJ1S101 \square SC-1000- \square	1000	1125	1145	1360

Note) Special T-nuts are required to secure the body. The special T-nuts are included with the body unit.
Refer to "Options" on page 40 regarding the quantity of T-nuts, etc.
The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting equipment

Slider Guide Type Series LJ1S10

Parts list/Main parts

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	50 W
2	Feed screw	-	Slide screw
3	Guide frame	Aluminum alloy	
4	Guide plate A	Special resin	
5	Guide plate B	Special resin	
6	Push bar	Carbon steel	Zinc plated
7	Frame cover	Stainless steel	
8	Coupling	-	
9	Bearing R	-	
10	Bearing F	-	
11	Frame A	Aluminum alloy	
12	Table	Aluminum alloy	
13	Housing B	Aluminum alloy	

Parts list/Main parts

No.	Description	Material	Note
14	Housing A	Aluminum alloy	
15	Top cover A	Aluminum alloy	
16	Side cover	Aluminum alloy	
17	Sensor rail	Aluminum alloy	
18	Bearing retainer	Aluminum alloy	
19	Bumper	IIR	
20	End cover A	PC	
21	End cover B	PC	
22	Inner cover	PC	
23	Magnet	Rare earth magnet	
24	Hexagon socket set screw	Chrome molybdenum steel	M3 x 8
25	Nut	Mild steel	M3
26	Auto switch	-	

How to Order

Please make separate inquiry regarding combinations with ball screw and a special slider guide, which can be arranged in addition to the above. Refer to page 24 for dimensions.

Specifications

Note) Refer to the drawing below for the internal circuitry of the limit switch.

Nonstandard Compatible Motors: The following motors can be mounted when specified.

	Motor output (W)	Power supply voltage (AC)	Motor model	Compatible driver model
Matsushita Electric Industrial Co., LTD	50	$100 / 115$		MSD5A1P1E
			MSD5A3P1E	
Mitsubishi Electric Corporation	50	$100 / 115$	HC-PQ053	MR-C10A1
Yaskawa Electric Corporation		$200 / 230$		
		$200 / 115$	SGME-A5BF12	SGDE-A5BP

Limit Switch Internal Circuit

D-Y59AL-232

* Refer to the motor compatibility table on page 42 when specified without motor.

For the dimensions of the motor mounting area, refer to the dimensions for Series LJ1 H 10 on page 43.
These may be used for reference during design and assembly.

* For detailed driver specifications, etc., inquiries should be directed to the respective motor manufacturers.

Series LJJTS20 Motor Output: 100W

How to Order

Please make separate inquiry regarding combinations with ball screw and a special slider guide, which can also be arranged in addition to the above.

Specifications

Stroke		mm	100	200	300	400	500	600	700	800	900	1000	1200
Weight		kg	6.8	7.9	9.0	10.1	11.1	12.2	13.3	14.3	15.4	16.4	18.6
Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (With no condensation)										
Maximum work load		kg	10										
Maximum speed		mm / s	300										
Rated thrust		N	50										
Positioning repeatability		mm	± 0.1										
Motor output			AC servomotor (100W)										
Encoder			Incremental system										
Feed screw	Rolled slide screw		$\varnothing 20 \mathrm{~mm}, 20 \mathrm{~mm}$ lead										
Guide			Slider guide										

Series LJ1S20

Dimensions

T-slot dimensions ${ }^{\text {Note) }}$

Dimension table/without brake

Model	Stroke	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}
LJ1S202 \square SC- 100- $\square \square$	100	269	316	132	462	184	175	18
LJ1S202 \square SC- 200- \square	200	369	416	232	562	184	175	18
LJ1S202 \square SC- 300- \square	300	469	516	332	662	184	175	18
LJ1S202 \square SC- 400- \square	400	569	616	432	762	184	175	18
LJ1S202 \square SC- 500- \square	500	669	716	532	862	184	175	18
LJ1S202 \square SC- 600- \square	600	769	816	632	962	184	175	18
LJ1S202 \square SC- 700- \square	700	878	916	732	1062	176	162	22
LJ1S202 \square SC- 800- \square	800	978	1016	832	1162	176	162	22
LJ1S202 \square SC- 900- \square	900	1078	1116	932	1262	176	162	22
LJ1S202 \square SC-1000- \square	1000	1178	1216	1032	1362	176	162	22
LJ1S202 \square SC-1200- \square	1200	1378	1416	1232	1562	176	162	22

Note) The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting equipment.
When mounting the body unit, M6x (33+ α, α : effective thread length of the actuator mounting platform) bolts are required.
When mounting using the T-slots on the actuator, special T-nuts are required. Refer to "Options" on page 40.

Construction

Parts list/Main parts

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	100 W
2	Feed screw	-	Slide screw
3	Guide frame	Aluminum alloy	
4	Guide plate A	Special resin	
5	Guide plate B	Special resin	
6	Push bar	Carbon steel	Zinc plated
7	Frame cover	Stainless steel	
8	Coupling	-	
9	Bearing R	-	
10	Bearing F	-	
11	Body A	Aluminum alloy	
12	Table	Aluminum alloy	
13	Housing A	Aluminum alloy	

Parts list/Main parts

No.	Description	Material	Note
14	Housing B	Aluminum alloy	
15	Body cover A	Aluminum alloy	
16	Side cover	Aluminum alloy	
17	Bearing retainer	Aluminum alloy	
18	Bumper	IIR	
19	End cover A	PC	
20	End cover B	PC	
21	Inner cover	PC	
22	Motor cover R	PC	
23	Motor cover L	PC	
24	Auto switch	-	
25	Magnet	Rare earth magnet	
26	Hexagon socket set screw	Chrome molybdenum steel	M4 x 8
27	Nut	Mild steel	M4

How to Order

[^8]
Slider Guide Type

Stroke		mm	100	200	300	400	500	600	700	800	900	1000	1200
Weight (without motor)		kg	6.3	7.4	8.5	9.6	10.6	11.7	12.8	13.8	14.9	15.9	18.1
Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)										
Maximum work load		kg	10										
Maximum speed		mm / s	300										
Positioning repeatability		mm	± 0.1										
Feed screw	Rolled slide screw		ø20mm, 20 mm lead										
Guide			Slider guide										
Limit switch ${ }^{\text {Note) }}$	Specifications		Power supply voltage: 4.5 to 28VDC Current consumption: 12 mA or less Control output: Open collector, maximum load current: 150 mA										

Note) Refer to the drawing below for the internal circuitry of the limit switch.

Nonstandard Compatible Motors: The following motors can be mounted when specified.

	Motor output (W)	Power supply voltage (AC)	Motor model	Compatible driver model
Matsushita Electric	Indus Industrial Co., LTD	100	$100 / 115$	MSM011P1A
		MSM012P1A	MSD011P1E	
Mitsubishi Electric Corporation	100	MSD013P1E		
		HC-PQ13	MR-C10A1	
Yaskawa Electric Corporation	100		SGME-01BF12	MR-C10A
		$200 / 230$	SGME-01AF12	SGDE-01BP

* Refer to the motor compatibility table on page 42 when specified without motor

For the dimensions of the motor mounting area, refer to the dimensions for Series LJ1 ${ }_{\mathrm{S}}^{\mathrm{H}} 20$ on page 43
These may be used for reference during design and assembly.

* For detailed driver specifications, etc., inquiries should be directed to the respective motor manufacturers.

Limit Switch Internal Circuit

D-Y59AL-232

Series LJISS30 Motor Output: 200W

How to Order

Specifications

Stroke		mm	200	300	400	500	600	800	1000	1200	1500
Weight		kg	14.4	16.2	18.0	19.8	21.5	25.7	29.7	33.3	38.7
Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (With no condensation)								
Maximum work load		kg	20								
Maximum speed		mm/s	500								
Rated thrust		N	50								
Positioning repeatability		mm	± 0.1								
Motor output			AC servomotor (200W)								
Encoder			Incremental system								
Feed screw	Rolled slide screw		$\varnothing 25 \mathrm{~mm}, 20 \mathrm{~mm}$ lead								
Guide			Slider guide								

Series LJ1S30

Dimensions

Area Z detail

T-slot dimensions ${ }^{\text {Note) }}$

Dimension table/without brake

Model	Stroke	A	B	C
LJ1S303 \square SC- 200- \square	200	445	365	698
LJ1S303 \square SC- 300- \square	300	545	465	798
LJ1S303 \square SC- 400- \square	400	645	565	898
LJ1S303 \square SC- 500- \square	\square	500	745	665
LJ1S303 \square SC- 600- \square	600	845	765	1098
LJ1S303 \square SC- 800- $\square \square$	800	1045	965	1298
LJ1S303 \square SC-1000- $\square \square$	1000	1245	1165	1498
LJ1S303 \square SC-1200- \square	1200	1445	1365	1698
LJ1S303 \square SC-1500- \square	1500	1745	1665	1998

Note) The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting equipment.
When mounting the body unit, M8 $\times(30+\alpha, \alpha$: effective thread length of the actuator mounting platform) bolts are required.
When mounting using the T-slots on the actuator, special T-nuts are required. Refer to "Options" on page 40.

Slider Guide Type
 Series LJ1S30

Construction

View A-A'

Parts list/Main parts

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	200 W
2	Feed screw	-	Slide screw
3	Guide frame	Aluminum alloy	
4	Guide plate A	Special resin	
5	Guide plate B	Special resin	
6	Push bar	Carbon steel	Zinc plated
7	Frame cover	Stainless steel	
8	Coupling	-	
9	Bearing R	-	
10	Bearing F	-	
11	Body A	Aluminum alloy	
12	Table	Aluminum alloy	
13	Housing A	Aluminum alloy	

Parts list/Main parts

No.	Description	Material	Note
$\mathbf{1 4}$	Housing B	Aluminum alloy	
15	Body cover A	Aluminum alloy	
16	Side cover	Aluminum alloy	
17	Bearing retainer	Carbon steel	Kanigen plated
18	Bumper	IIR	
19	End cover A	PC	
20	End cover B	PC	
21	Inner cover	PC	
22	Motor cover R	PC	
23	Motor cover L	-	
24	Auto switch	Rare earth magnet	
25	Magnet	Mild steel	M5
26	Hexagon socket set screw	Chrome molybdenum steel	M5 x 8
27	Nut		

How to Order

Please make separate inquiry regarding combinations with ball screw and a special slider guide, which can be arranged in addition to the above. Refer to page 36 for dimensions.

Slider Guide Type

Specifications

Stroke		mm	200	300	400	500	600	800	1000	1200	1500
Weight (without motor)		kg	13.3	15.1	16.9	18.7	20.4	24.6	28.6	32.2	37.6
Operating temperature range		${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)								
Maximum work load		kg	20								
Maximum speed		mm/s	500								
Feed screw	Rolled slide screw		$\varnothing 25 \mathrm{~mm}, 20 \mathrm{~mm}$ lead								
Guide			Slider guide								
Limit switch ${ }^{\text {Note) }}$	Specifications		Power supply voltage: 4.5 to 28VDC Current consumption: 12 mA or less Control output: Open collector, maximum load current: 150mA								

Note) Refer to the drawing below for the internal circuitry of the limit switch.

Nonstandard Compatible Motors: The following motors can be mounted when speciifed.

	Motor output (W)	Power supply voltage (AC)	Motor model	Corresponding driver model
Matsushita Electric Industrial Co., LTD	200	$100 / 115$	MSM021P1A	MSD021P1E
		$200 / 230$	MSM022P1A	MSD023P1E
Mitsubishi Electric Corporation	200	$100 / 115$	HC-PQ23	MR-C20A1
Yaskawa Electric Corporation	$200 / 230$	MR-C20A		
	200	$100 / 115$	SGME-02BF12	SGDE-02BP
	$200 / 230$	SGME-02AF12	SGDE-02AP	

Limit Switch Internal Circuit

D-Y59AL-232

* Refer to the motor compatibility table on page 42 when specified without motor.

For the dimensions of the motor mounting area, refer to the dimensions for Series LJ1 ${ }_{\mathrm{S}} 20$ on page 43.
These may be used for reference during design and assembly.

* For detailed driver specifications, etc., inquiries should be directed to the respective motor manufacturers.

Series LJ1
 Option Specifications

T-nuts for Mounting Electric Actuator

T-nuts are used when mounting an actuator using its T-slots. When mounting by means of T-nuts alone, the quantity of nuts indicated below should be used as a minimum.

T-nut (nut size M8)
Type LJ1-T8 (weight 8.4g)

T-nut quantities for mounting

Model	Quantity
LJ1 ${ }_{S} 10$	200 mm stroke or less 6pcs.
	300mm stroke or more 8pcs.
LJ1 $\mathrm{S}_{\mathbf{S}}^{\mathrm{H}} \mathbf{2 0}$	8pcs.
LJ1 $\mathrm{H}_{\mathbf{S}} \mathbf{3 0}$	8pcs.

* T-nuts are built into the body unit for Series LJ1 ${ }_{\mathrm{H}}^{\mathrm{H}} 10$ only.

Cover with Switch Slots

This is a cover with T-slots for mounting external switches. Switch positions can be easily changed.
It is used by replacing the standard cover.

How to Order

$\mathbf{1}$	LJ1 H 10
$\mathbf{2}$	LJ1 H 20
$\mathbf{3}$	LJ1 H 30

$\mathbf{1 0 0}$	100 mm	$\mathbf{7 0 0}$	700 mm
$\mathbf{2 0 0}$	200 mm	$\mathbf{8 0 0}$	800 mm
$\mathbf{3 0 0}$	300 mm	$\mathbf{9 0 0}$	900 mm
$\mathbf{4 0 0}$	400 mm	$\mathbf{1 0 0 0}$	1000 mm
$\mathbf{5 0 0}$	500 mm	$\mathbf{1 2 0 0}$	1200 mm
$\mathbf{6 0 0}$	600 mm	$\mathbf{1 5 0 0}$	1500 mm

* Refer to "Series Variations" on Feature page 3 for correspondence of models and strokes.

Dimension table

Model	A
LJ1S 10	30
LJ1 H 20	55
LJ1 H 30	69

Dustproof Cover

The dustproof cover prevents the entry of dust, paper dust and scraps, etc.

Nonstandard Motor Cables

Cables for connecting nonstandard motors and drivers.
Cable lengths other than those shown below should be arranged by the customer.

How to Order

G \quad Matsushita Electric Industrial Co., LTD

\mathbf{G}	Matsushita Electric Industrial Co., LTD
\mathbf{R}	Mitsubishi Electric Corporation
\mathbf{Y}	Yasukawa Electric Corporation

Cable compatibility table

Model	Manufacturer's No.
LJ1-1-G05 ${ }^{\text {Note 1) }}$	MFMCA0050AEB (for motor) MFECA0050EAB (for encoder)
LJ1-1-R05	(for motor) Note 2) MR-CCBL5M (for encoder)
LJ1-1-Y05 $^{\text {Note 3) }}$	DP9320081-2 (for motor) DP9320089-2 (for encoder)

Note 1) When the Matsushita Electric Industrial Co., LTD motor driver is selected, in addition to the cable, a power supply connector (MOLEX $5569-1 \mathrm{OR}$) and an interface connector (3M 10126-3000VE) are also required.
Note 2) A cable is not provided for the Mitsubishi Electric Corporation motor, and therefore the customer should arrange a 4 wire $0.75 \mathrm{~mm}^{2}$ electric cable.
Note 3) When the Yasukawa Electric Corporation motor driver is selected, a digital operator and personal computer are required for selecting the various parameters.

Please refer to the technical literature of each manufacturer for further details.

Able to compactly arrange supporting guides for cables and hoses.

Series LJ1 ${ }_{\mathrm{S}}^{\mathrm{H}} 10$

How to Order

* Refer to "Series Variations" on Feature page 3 for correspondence of models and strokes

Series LJ1 ${ }_{\mathrm{S}}^{\mathrm{H}} 20$

View A

Series LJ1 ${ }_{S}^{\mathrm{H}} 30$

Construction/Parts list

Parts list

No.	Description	Material	Note
$\mathbf{1}$	TSUBAKICABLEVEYOR $®$	-	-
$\mathbf{2}$	Cable side cover	Aluminum alloy	-
$\mathbf{3}$	Mounting plate	Aluminum alloy	-
$\mathbf{4}$	Cable flange	Aluminum alloy	-
$\mathbf{5}$	End cap	EP	-

Precautions on handling of the TSUBAKICABLEVEYOR®

1. When handling, connecting and disconnecting the

TSUBAKICABLEVEYOR®

- Wear suitable clothing and appropriate protective gear (safety glasses, gloves, safety shoes, etc.).
- Use suitable tools.
- Provide support so that the TSUBAKICABLEVEYOR® and parts do not move freely.

2. Implement protective measures (safety cover, etc.).
3. Be sure to turn off the power and ensure that it cannot be turned on accidently before installation, removal or maintenance of the equipment.
4. In order to prevent secondary accidents, put the surrounding area in good order and operate under safe conditions.

Series LJ1

Reference Data

Motor Options 1

The following motors can be mounted when specified without motor.

	Motor output (W)	Power supply voltage (AC)	Motor model	Compatible driver model	Compatible model
Matsushita Electric Industrial Co., LTD	50	100/115	MSM5AZP1A	MSD5A1P1E	LJ1H10 (horizontal only)
			MSM5AZA1A	MSD5A1A1X	
		200/230	MSM5AZP1A	MSD5A3P1E	LJ1S10
			MSM5AZA1A	MSD5A3A1X	
	100	100/115	MSM011P1A	MSD011P1E	LJ1H10 (vertical only)
			MSM011A1A	MSD011A1X	LJ1H20
		200/230	MSM012P1A	MSD013P1E	LJ1S20
			MSM012A1A	MSD013A1X	
	200	100/115	MSM021P1A	MSD021P1E	LJ1H30
			MSM021A1A	MSD021A1X	
		200/230	MSM022P1A	MSD023P1E	LJ1S30
			MSM022A1A	MSD023A1X	
Mitsubishi Electric Corporation	50	100/115	HC-PQ053	MR-C10A1	LJ1H10 (horizontal only)
			HA-ME053	MR-J10MA1	
			HC-MF053	MR-J2-10A1	
		200/230	HC-PQ053	MR-C10A	LJ1S10
			HA-ME053	MR-J10MA	
			HC-MF053	MR-J2-10A	
	100	100/115	HC-PQ13	MR-C10A1	LJ1H10 (vertical only)
			HA-ME13	MR-J10MA1	
			HC-MF13	MR-J2-10A1	LJ1H2O
		200/230	HC-PQ13	MR-C10A	
			HA-ME13	MR-J10MA	LJIS20
			HC-MF13	MR-J2-10A	
	200	100/115	HC-PQ23	MR-C20MA1	LJ1H30
			HA-ME23	MR-J20A1	
			HC-MF23	MR-J2-20A1	
		200/230	HC-PQ23	MR-C20A	LJ1S30
			HA-ME23	MR-J20MA	
			HC-MF23	MR-J2-20A	
Yaskawa Electric Corporation	50	100/115	SGME-A5BF12	SGDE-A5BP	LJ1H10 (horizontal only)
			SGM-A5B312	SGDA-A5BP	
		200/230	SGME-A5AF12	SGDE-A5AP	LJ1S10
			SGM-A5A312	SGDA-A5AP	
	100	100/115	SGME-01BF12	SGDE-01BP	LJ1H10 (vertical only) LJ1H2O LJ1S20
			SGM-01B312	SGDA-01BP	
		200/230	SGME-01AF12	SGDE-01AP	
			SGM-01A312	SGDA-01AP	
	200	100/115	SGME-02BF12	SGDE-02BP	LJ1H30
			SGM-02B312	SGDA-02BP	
		200/230	SGME-02AF12	SGDE-02AP	LJ1S30
			SGM-02A312	SGDA-02AP	

Nonstandard Motor Mounting Dimensions

Series LJ1 H/S 10

Motor mounting dimensions

Manufacturer	Mitsubishi Yaskawa	Matsushita
Thread size	M4 $\times 0.7$	M3 $\times 0.5$
Effective thread length (mm)	8	6
Quantity	2	4
PCD	46	45

VIIVIA Motor mounting area
Note) When mounting the coupling to the motor, mount within the range of the dimensions shown to the left.

Dimensions

	C	D	E	F
With brake (mm)	101	26	32	8.5
Without brake (mm)	93	19	27.5	17

Series LJ1 H/S 20

Motor mounting dimensions

Manufacturer	Mitsubishi Yaskawa	Matsushita
Thread size	M4 x 0.7	M3 x 0.5
$\begin{gathered} \text { Effective thread } \\ \text { length (mm) } \\ \hline \end{gathered}$	8	6
Quantity	2	4
PCD	46	45
Q171/A Motor mounting area		

Note 1) When mounting the coupling to the motor, mount within the limits of the dimensions shown to the left.

| LJ1H20 $\square \square \square$ |
| :--- | :--- |${ }_{P}^{N} \mathbf{C} \quad 500$ to 1000 stroke

| LJ1H20 $\square \square$ SC |
| :--- | :--- | | LJ1S20 $\square \square$ SC | 700 to 1200 stroke |
| :--- | :--- | :--- |

Note 2) When mounting the coupling to the motor, mount within the range of the dimensions shown to the left.

Series LJ1 H/S 30

Section BB

Section AA (housing interior)

Coupling mounting dimensions ${ }^{\text {Note) }}$

Motor mounting dimensions

Manufacturer	Mitsubishi Yaskawa	Matsushita
Thread size	M5 x 0.8	M4 x 0.7
Effective thread length (mm)	6	6
Quantity	4	4
PCD	70	70
VIIIIT Motor mounting area		

Note) When mounting the coupling to the motor, mount within the range of the dimensions shown to the left.

Series LJ1

Nonstandard Motors/Matsushita Electric Industrial Co., LTD Drivers
Dimensions

Summary of input/output signals (connector CN-1/F)
Dimension table

Driver model	A
MSD5A1P1E	35
MSD5A3P1E	
MSD013P1E	
MSD011P1E	45
MSD023P1E	
y	

Pin No.	Symbol	Signal name	Pin No.	Symbol	Signal name
1	COM +	Control signal power supply	12	IM	Torque monitor signal
2	SRV-ON	Servo ON input	13	COM-	Control signal power supply
3	A-CLR	Alarm clear input	14	GND	
4	CL	Counter clear input	19	OZ +	Z phase output
5	GAIN	Gain switching input	20	OZ-	Z phase output
6	DIV	Command divider switching input	21	CZ	Z phase output
7	CWL	CW drive suppression input	22	CW +	CW pulse input
8	CCWL	CCW drive suppression input	23	CW-	CW pulse input
9	ALM	Servo alarm output	24	CCW +	CCW pulse input
10	COIN	Positioning completion signal output	25	CCW-	CCW pulse input
11	SP	Speed monitor signal	26	FG	Frame ground

Equipment connection example

Nonstandard Motors/Mitsubishi Electric Corporation Drivers
Dimensions (without RS-232C option unit)

Summary of input/output signals (connector CN-1/F)

Driver model
MR-C10A
MR-C20A
MR-C10A1
MR-C20A1

Pin No.	Symbol	Signal name	Pin No.	Symbol	Signal name
1	V+	Digital output power supply	11	SD	Shield
2	ALM	Failure	12	SG	Interface power supply common
3	PF	Positioning completion	13	CR	Clear
4	OP	Z phase pulse	14	LSN	Reverse stroke end
5	SG	Interface power supply common	15	LSP	Normal stroke end
7	NP	Reverse pulse train	16	V5	Interface power supply
8	NG	Reverse pulse train	17	SON	Servo ON
9	PP	Normal pulse train	19	OPC	Open collector power supply
10	PG	Normal pulse train	20	V24	Interface power supply

Equipment
connection example

Note 1) Do not orient diodes incorrectly. If connected backwards, the amp will fail.
2) Wiring for standard cable of less than 10 m . When over 10 m , four lines each of P5 and LG wire should be connected in parallel. (Maximum 50m)
3) Signals having the same name should be connected to the same pin on the connector.
4) The failure (ALM) signal is ON under normal conditions when there is no alarm. When it goes OFF (when an alarm is generated), the controller output should be stopped by the sequence program.
5) The LSP and LSN signals do not require wiring, because they are automatically turned ON internally at the time of shipment. (They can also be validated by parameters.)
6) A sequence should be implemented to turn ON the RDY relay after confirming that there is no trouble with the servo (ALM signal is ON).

Series LJ1

Nonstandard Motors/Yaskawa Electric Corporation Drivers

Dimensions

Dimensions

Driver model	A	B
SGDE-A5AP		
SGDE-A5BP	50	55
SGDE-01AP		
SGDE-01BP		
SGDE-02AP		
SGDE-02BP	65	75

Equipment Connection Example

Summary of input/output signals (connector CN-1/F)

Pin No.	Symbol	Signal name	Pin No.	Symbol	Signal name
1	PULS	Command pulse input	14	S-ON	Servo ON input
2	PULS	Command pulse input	15	P-CON	P actuation input
3	SIGN	Command code input	16	P-OT	Normal rotation suppression input
4	SIGN	Command code input	17	N-OT	Reverse rotation suppression input
5	CLR	Deviation counter clear input	18	ALMRST	Alarm reset input
6	CLR	Deviation counter clear input	32	PCO	PG ouput C phase
7	BK	Brake interlock signal output	33	SG	OV
8	COIN	Positioning completion signal output	34	ALM	Servo alarm output
10	SGCOM	OV	35	SG	OV
13	P-IN	External power supply input	36	FG	Frame ground

Single phase 200 to 230 VAC ${ }_{-15 \%}^{+10 \%}$ ($50 / 60 \mathrm{HZ}$)

For 100 V
Single phase 100 to 115 VAC $_{-15 \%}^{+10 \%}$ ($50 / 60 \mathrm{HZ}$)

Command pulse (MAX.225/kpps)

Deviation counter clear signal (active high)
 \rightarrow Servo ON
 \rightarrow Proportionallo Reverse drive
suppression \rightarrow Normal drive suppression 30 VDC

With servo alarm 5Ry is OFF
At completion of positioning 8Ry is ON

At start of holding brake operation 4Ry is OFF

50 mA or less

Servo malfunction indicator For power supply switching A surge voltage suppressor should be attached to the electromagnetic contactor and relay.

Series LJ1
 Order Made Specifications

Stepping Motor/DC Servomotor Specifications

Compatibility for both stepping motor and DC servomotor.

Example) Combination of Series LJ1H10 and stepping motor

Example) Combination of Series LJ1H20 and DC servomotor

Note) When using a stepping motor or a DC servomotor, take note that there may be differences in the specifications. Please inquire regarding details.
Clean room, special thread and other order made specifications can also be arranged.

Series LC1 Uniaxial Type with Built-in AC Servo-driver

Series LC1

Typical Equipment Configurations

<Operation from a personal computer>

Teaching box

* Exclusive controller setup software (optional) is required.
<Operation from an operating panel>

Teaching box

Operating panel

Controlled by general-purpose input/output
<Operation from a programmable logic controller (PLC)>

Series LC1 Uniaxial Type with Bult－in Ac Servo－driver

How to Order

Actuator Classification
B \quad Series LJ1（incremental）

Adaptable actuators

Symbol	Motor capacity	Compatible actuator models	
1H	50W	LJ1H101 \square－${ }^{\text {a }}$	Ball screw High rigidity direct acting guide Without brake
2H	100W	$\begin{aligned} & \text { LJ1H202■ } \square \mathrm{A} \\ & \text { LJ1H202■ } \end{aligned}$	
3H	200W	LJ1H303口ロD	
1S	50W	LJ1S101口SC	Slide screw Slider guide
2 S	100W	LJ1S202■SC	
35	200W	LJ1S303 \square SE	
1M	50W	LJ1H101■SC	Slide screw High rigidity direct acting guide
2M	100W	LJ1H202■SC	
3M	200W	LJ1H303口SC	
1VH ${ }^{\text {Note 1 }}$ 1）	100W	LJ1H102■ดH－$\square \square \square \mathrm{C}$	Ball screw High rigidity direct acting guide With brake
1VB ${ }^{\text {Note 11 }}$	100W	LJ1H102ロロB－$\square \square \square K$	
2VF ${ }^{\text {Note 11 }}$	100W		
2VA ${ }^{\text {Note 11 }}$	100W	LJ1H202ロロA－$\square \square \square \mathrm{C}$	
3VA ${ }^{\text {Note 1）}}$	200W	LJ1H303ロロA－$\square \square \square \mathrm{C}$	

\triangle Caution Note 1）LC1－1B1V $\square \square$ Contact SMC regarding a LC1－1B2V \square LC1－1B3V \square regenerative absorption unit which must be considered for these models depending on the operating conditions．

Power supply

$\mathbf{1}$	$100 / 110$ VAC $50 / 60 \mathrm{~Hz}$
$\mathbf{2}^{\text {Note 2）}}$	$200 / 220$ VAC $50 / 60 \mathrm{~Hz}$

Note 2）The power supply for model
LC $1-1 \mathrm{~B} 3 \mathrm{H} 2$ is 200 VAC ， $50 / 60 \mathrm{~Hz}$ ．

Mounting ${ }^{\text {Note 1）}}$

N ：T－nut mounting

L：T－bracket mounting

Note 1）This controller includes the accessories listed below． LC1－1－$\square \square$／Either T－nuts or T－brackets for mounting LC1－1－1000／Controller connector LC1－1－2000／Controller connector

Note）The following options are necessary for operating and setting this controller．

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
\text { LC1-1-S1 (PC-98 (MS-DOS) edition } \\
\text { LC1-1-W1 (Windows 95 edition) }
\end{array}\right)} \\
\text { and } \\
\text { LC1-1-R } \square \text { (dedicated communication cable) }
\end{array}\right]
$$

For ordering information，refer to the option part numbers on page 62.

Performance/Specifications

Performance/Specifications
General specifications

Item Model	LC1-1B $\square \square 1$						LC1-1B $\square \square 2$					
Power supply	$100 \mathrm{~V} / 110 \mathrm{VAC} \pm 10 \% 50 / 60 \mathrm{~Hz}$						$200 \mathrm{~V} / 220 \mathrm{VAC} \pm 10 \% 50 / 60 \mathrm{~Hz}$ (LC1-1B3H2 is $200 \mathrm{VAC} \pm 10 \%$)					
Leakage current	5 mA or less											
Dimensions	$80 \times 120 \times 244 \mathrm{~mm}$											
Weight	2.2 kg											
Housing type	Single unit installation type (resin housing)											
Actuator control												
Item Model	LC1-1B1H \square	LC1-1B2HD	LC1-1B3HD	LC1-1B1MD	LC1-1B2MD	LC1-1B3MD	LC1-1B1V]	LC1-1B2V]	LC1-1B3VID	LC1-1B1S \square	LC1-1B2S \square	LC1-1B3S \square
Compatible actuator model	LJ1H101—NB LJ1H101 PPB	LJ1H202 NA LJ1H202 PPA	LJ1H303 CND LJ1H303 \square PD	LJ1H101■SC	LJ1H202■SC	LJIH303■SE		LJ1H202 	LJ1H303 	LJ1S101—SC	LJ1S202■SC	LJ1H303■SC
Compatible guide	High rigidity direct acting guide						High rigidity direct acting guide with brake			Slider guide		
Motor capacity	50W	100W	200W	50W	100W	200W	100W	100W	200W	50W	100W	200W
Operating temperature range	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$		5 to $40^{\circ} \mathrm{C}$
Electric energy	180VA	300 VA	640VA	180VA	300VA	640VA	300 VA	300 VA	640VA	100VA	300 VA	640VA
Control system	AC software servo/PTP control											
Position detection system	Incremental encoder											
Home position return function	With magnet switch as adjacent switch, and encoder Z phase signal as home position signal. Home position return direction is selectable.											
Maximum positioning point setting	1008 points (when step designation is actuated)											
Addressing	Absolute and incremental used in combination											
Position designation range	0.00 mm to 4000.00 mm											
Speed designation range	$1 \mathrm{~mm} / \mathrm{s}$ to $2500 \mathrm{~mm} / \mathrm{s}$											
Acceleration/deceleration designation range	Trapezoidal acceleration/deceleration $1 \mathrm{~mm} / \mathrm{s}^{2}$ to $9800 \mathrm{~mm} / \mathrm{s}^{2}$											

Note) There are cases in which the position, speed and acceleration designations are not realized, depending upon the actuator that is connected and the operating conditions.

Programming

Item	Performance/Specifications
Means of programming	Exclusive controller setup software (LC1-1-S1/LC1-1-W1) and exclusive teaching box (LC1-1-T1- $\square \square)$
Communication method	Dedicated communication cable
Functions	Programming, Operation, Monitor, Test, Alarm reset
Number of programs	8 programs
Number of steps	1016 steps (127 steps $\times 8$ programs)

Operating configuration

Item	Performance/Specifications
Operating methods	Operation by PLC, operating panel, etc. via control terminal; Operation by PC (controller setup software); Operation by teaching box
Summary of operations	Program batch execution (program designated operation), Step designated execution (position movement, point designated operation)
Test run functions	Program test, Step No. designated operation, JOG operation, Input/output operation
Monitor functions	Executed program indication, Input/output monitor

Peripheral device control

Item	Performance/Specifications
General-purpose input	6 point, photo-coupler insulation, 24VDC, 5mA
General-purpose output	6 point, open collector output, 35VDC, 80mA/1 point
Control commands	Ouput ON/OFF, Input condition wait, Condition jump, Time limit input wait
Safety Items	
Item	
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Drive power supply cut-off,
Communication error, Battery error, Abnormal parameter, Limit out	

Series LC1

Mounting of Controller

Mounting of the controller is performed by means of the two T-grooves provided on the bottom surface.
Mounting is possible from above or below using the special T-nuts or T-brackets. Refer to page 63 for further details.

Note) This controller comes with either the T-nuts or T-brackets as accessories

Controller model	Mounting screws	Mounting bracket Ass'y
LC1-1B $\square \square-$ N3	M3 x 0.5	LC1-1-N3
LC1-1B $\square \square-$ N5	M5 $\times 0.8$	LC1-1-N5
LC1-1B $\square \square-$ L3	M3	LC1-1-L3
LC1-1B $\square \square-$ L5	M5	LC1-1-L5

Mounting with T-nuts

Mounting with T-bracket

Dimensions

LC1-1B $\square \mathrm{H} \square$
LC1-1B \square S \square
LC1-1B \square M \square

LC1-1B $\square \mathrm{V} \square \square$

Series LC1

Series LC1/Operating Part Names

Controller Command Setting List

Actuator Control Commands

Classification	Function	Mnemonic	Parameter value
Movement	Absolute movement command	MOVA	Address (speed)
	Incremental movement command	MOVI	\pm Movement (speed)
Setting	Acceleration setting command	ASET	Acceleration

I/O Control Commands

Classification	Function	Mnemonic	Parameter value
Output control	Output ON command	O-SET	General-purpose output No.
	Output OFF command	O-RES	General-purpose output No.
	Output reversal command	O-NOT	General-purpose output No.
Input wait	AND output wait command	I-AND	General-purpose input No., State
	OR input wait command	I-OR	General-purpose input No., State
Input wait with time out function	AND input time out jump command	T-AND	General-purpose input No., State (P-No.) label
	OR input time out jump command	T-OR	General-purpose input No., State (P-No.) label
	AND input time out subroutine call command	C-AND	General-purpose input No., State (P-No.) label
	OR input time out subroutine call command	C-OR	General-purpose input No., State (P-No.) label
Condition jump	AND input condition jump command	J-AND	General-purpose input No., State (P-No.) label
	OR input condition jump command	J-OR	General-purpose input No., State (P-No.) label

Program Control Commands

Classification	Function	Mnemonic	Parameter value
Jump	Unconditional jump command	JMP	(P-No.) label
Subroutine	Subroutine call command	CALL	(P-No.) label
	Subroutine end declaration	RET	
Loop	Loop start command	FOR	Loop frequency
	Loop end command	NEXT	
End	Program end declaration	END	
Timer	Timer command	TIM	Timer amount

Control Terminal: CN1

Terminal to perform actuator operation (connects PLC and operating panel)

CN1. Control terminal list

Terminal	Pin No.	Description	Content
+24V	$(1,14)$	Common	The positive common of the input terminal.
SET-UP	(2)	Starting preparation	The terminal which performs setup operations (actuator starting preparation).
RUN	(15)	Starting	The terminal which performs program start.
Pro-No.bit1	(17)	Program designation	The terminal which designates the program to be executed. Can designate 8 types of programs with a total of 3 bits. (a combination of 1.2.4)
Pro-No.bit2	(5)		
Pro-No.bit3	(18)		
Stp-No.bit1	(6)	Step designation	The terminal which designates the step to be executed. Used when executing steps (position movement). (a combination of 1.2.4. 8. 16. 32. 64.)
Stp-No.bit2	(19)		
Stp-No.bit3	(7)		
Stp-No.bit4	(20)		
Stp-No.bit5	(8)		
Stp-No.bit6	(21)		
Stp-No.bit7	(9)		
HOLD	(3)	Temporary stop	Temporarily stops the program run by means of the ON input.
STOP	(16)	Emergency stop (nonlogical input)	Performs an emergency stop when ON input stops.
ALARM RESET	(4)	Alarm release	Releases the alarm being generated by means of the ON input.

Output terminals

Terminal	Pin No.	Description	Content
READY	(23)	System ready signal	Indicates ability to perform control terminal input and communication via the dedicated communication cable when ON.
SET-ON	(10)	Start readiness signal	Indicates that the SET-UP operation (start ready operation: return to home position after servo ON) is complete when ON. The state in which the program can be run.
BUSY	(11)	Operating signal	Indicates operation in progress when ON. ON when program is being executed and when returning to the home position.
$\overline{\text { ALARM }}$	(24)	Alarm output	When this signal is off, an alarm is being generated for the actuator/controller.
COM	$(12,25)$	Common	The output terminal common.

Control Terminal: CN1

Control Terminal: CN2

< 1 >

Series LC1

Series LC1

Timing for READY signal generation immediately after turning on power

Timing for home position return

Timing for program/step execution

Timing for alarm reset

Timing for temporary stop during operation

Timing for stop by ALARM-RESET during operation

Timing for emergency stop during operation

Response time with respect to controller input signals

The following requisites exist for delay of response with respect to controller input signals.

1) Scanning delay of the controller input signal.
2) Delay by the input signal analysis computation.
3) Delay of command analysis processing.

Points (1) and (2) above apply to delay with respect to the SET-ON, ALARM-RESET and STOP signals.

Points (1), (2) and (3) above apply to delay with respect to cancellation of the RUN and HOLD signals.
When signals are applied to the controller by means of a PLC, the PLC processing delay and the controller input signal scan delay should be considered, and
the signal state should be maintained for 50 ms or longer.
It is recommended that the input signal state be initialized with the response signal to the input signal as a condition.

Controller Setup Software (1)

Software for operating the LC1 series controller is provided in the PC-98 (MS-DOS) edition.

Features:

- Reading and saving of parameters and programs.
- JOG teaching when creating programs.
- Easy confirmation of program operation with test mode.
- Diagnosis of I/O and observation of operating conditions with task monitor.
- Support of all controller functions.

PC-98 (MS-DOS) Edition

Model: LC1-1-S1

Operating environment

Computer	PC-9821, PC-98, PC-9801 with 80286 or higher CPU. PC-H98 series and compatible machines (except for high resolution mode)
OS	MS-DOS Ver 3.3 or higher
Memory	640 KB or more
Disk drive	1MB capacity 3.5 inch floppy disk drive

* MS-DOS is a registered trade mark of the Microsoft Corporation.
* PC-98 Series is a registered trade mark of NEC Corporation.
* The dedicated communications cable (LC1-1-R $\square \square$) is required when using this software.
* Available only in Japanese edition.

[^9]
Series LC1

Controller Setup Software (2)

Windows edition controller setup software includes all of the functions of PC98 (MS-DOS) edition software, and the following functions have also been added.

- Direct teaching.
- Program printing.
- Batch editing and sending/receiving of all programs.
- Batch management and multiple saving of parameters and programs.

Windows Edition

Model: LC1-1-W1

Operating environment

Computer	A model with a Pentium 75MHz or faster CPU, and able to fully operate Windows 95.
OS	Windows 95
Memory	16 MB or more
Disk drive	5 MB of disk space required

* Windows is a registered trade mark of the Microsoft Corporation.
* Pentium is a domestic trade mark of the Intel Corporation.
* PC-98 Series is a registered trade mark of NEC Corporation.
- The dedicated communications cable (LC1-1-R***) is required when using this software.
- This software cannot be used with Windows 3.1.

Screen example

Series LC1

 Dedicated Teaching Box Series LC1-1-T1The new teaching box makes the electric actuator and controller even easier to use.

Series LC1

How to Order

Performance/Specifications

General Specifications

	LC1-1-T1-0 \square
Power supply	Supplied from LC1
Dimensions (mm)	$169 \times 76 \times 20$
Weight (g)	158
Case type	Resin case
Display unit	46×55 liquid crystal screen
Operating unit	Keyswitches, LED indicators
Cable length	$2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$

Basic Performance

	Performance
Compatible controller	LC1 (all models)
Operating temperature range	5 to $50^{\circ} \mathrm{C}$
Communication method	RS232C
Functions	Programming, Parameter change, Setup, Operation, JOG operation, Monitor, Alarm reset, JOG Teaching
Monitor functions	Movement position, Movement speed
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power, Communication error, Battery error, Limit out, Abnormal driver parameter, RAM malfunction
Protection function indicator	Alarm code

Dimensions

Series LC1/Options

T-nuts \& T-brackets for mounting

Be certain to use when mounting the controller.
Note) The controller unit includes either T-nuts or T-brackets.

T-nuts (weight 10.0 g)

T-brackets
Model LC1-1-L5 (weight 16.0g)
Model LC1-1-L3 (weight 15.5g)

Controller connector

The connector used for CN1 (control terminal) and CN2 (generalpurpose input/output).
These are each Halfpitch types.
Note) The controller unit includes a controller connector for use with CN1 and CN2
CN1: Control terminal
Model LC1-1-1000

10326-52A0-008
Halfpitch hood (26P)
Made by 3M
10126-3000VE
Halfpitch plug (26P)
Made by 3M
CN2: General-purpose input/output terminal
Model LC1-1-2000

User connector (CN2: General-purpose input/output terminal) Model LC1-1-2050

10320-52A0-008

Halfpitch hood (20P)
Made by 3M
10120-3000VE
Halfpitch plug (20P)
Made by 3M

Dedicated communication cable

The connector which connects the controller and PC.

Note) Pay attention to the shape of the connector on the PC.

Dedicated communication cable (IBM PC/AT compatible computer)

Dedicated communication cable (D-Sub) (for NEC PC-98 Series) Model LC1-1-R $\square \mathbf{D}$

Cable length
$02-2 m$
$04-4 m$
$03-3 m$
$05-5 m$

Dedicated communication cable (Halfpitch) (for NEC PC-98 Series) Model LC1-1-R $\square \mathbf{H}$

- Cable length

02-2m 04-4m 03-3m 05-5m

[^10]
Electric Actuator Catalog Terminology

Description	Content
Address	The absolute location assigned by the absolute coordinate system
Addressing	The indication system for assigning the amount of movement to the actuator movement command Absolute (absolute coordinate system) or incremental (relative coordinate system/movement amount indication)
Absolute	The absolute coordinate system comprises coordinates which indicate absolute location based on the actuator's home position
Incremental	The incremental (relative) coordinate system comprises coordinates which indicate the amount of actuator table movement
AC servomotor	A servomotor which is turned by applying alternating current to a stationary coil Its special feature is the absence of brushes and commutators which were a disadvantage in DC servomotors
Encoder	The device which detects the rotation position of the motor Broadly divided into absolute and incremental, and classified as optical or magnetic
Slider guide	A simple guide attached to a surface using a special resin
Trapezoidal acceleration/deceleration	The acceleration/deceleration applied during a specific movement is constant, with a geometrical locus whereby the relationship of time and speed is expressed as a trapezoidal shape
Driver	A circuit arrangement for turning the motor A separate controller is required for operation
Mnemonic	Commands used to describe the controller program
Parameter	An established value which regulates the operating format stored in the controller, the specifications of the connected actuator, etc.
General-purpose input/output	The terminal which is controlled by the program
PTP control	Movement control from point to point
Pitching (moment)	The moment which acts longitudinally when an object is moving linearly
Ball screw	Changes rotating movement to linear movement when its screw axis and nut make rolling contact through balls Ground ball screw, rolled ball screw
Matrix editor	The function (editor) which creates the controller program by means of the controller setup software, tabular format (matrix)
Monitor function	The function within the controller setup software which can observe the state of the controller
Yawing (moment)	The moment which acts laterally when an object is moving linearly
Limit switch	The switch which senses movement beyond the normal stroke of the actuator
Rolling (moment)	The moment which acts in the direction of rotation when an object is moving linearly
Deenergized operation type electromagnetic brake	An electromagnetic brake which operates when current is not applied.

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 10218 Note 1), JIS 8433 Note 2) and other safety practices.

\triangle Warning

1. The compatibility of electric actuators is the responsibility of the person who designs the system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific system must be based on specifications or after analysis and/or tests to meet your specific requirements.
2. Only trained personnel should operate this equipment.

Electric actuators can be dangerous if an operator is unfamiliar with them. Assembly, handling or repair of systems using electric actuators should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
1.Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
2.When equipment is to be removed, confirm the safety process as mentioned above, and shut off the power supply for this equipment.
3.Before machinery/equipment is restarted, confirm that safety measures are in effect.

4. Contact SMC if the product is to be used in any of the following conditions:

1.Conditions and environments beyond the given specifications, or if product is used outdoors.
2.Installation on equipment in conjunction with atomic energy, medical equipment, food and beverages, or safety equipment.
3.An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Precautions on Design
 Warning

1. There is a possibility of dangerous sudden action by actuators if sliding parts of machinery are twisted due to external forces, etc.
In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.
2. A protective cover is recommended to minimize the risk of human injury.
If a stationary object and moving parts of a cylinder are in close proximity, human injury may occur. Design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts of electric actuators so that they will not become loose.
Avoid use in locations where direct vibration or impact shock, etc. will be applied to the body of the actuator.
4. In cases where dangerous conditions may result from power failure or malfunction of the product, safety equipment should be installed to prevent damage to machinery and human injury. Consideration must also be given to drop prevention with regard to suspension equipment and lifting mechanisms.
5. Consider possible loss of power sources.
Measures should be taken to protect against human injury and machinery damage in the event that there is a loss of air pressure, electricity or hydraulic power.
6. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.
7. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation.

Precautions on Operation
 Caution

1. In order to ensure proper operation be certain to read the instruction manual carefully.
As a rule, handling or usage/operation other than that contained in the instruction manual are prohibited.
2. This actuator can be used within its allowable range with a direct load applied, but when connected to a load having an external guide mechanism careful alignment is necessary. The longer the stroke, the greater the amount of variation in the shaft center, and therefore, a method of connection which can absorb the displacement should be considered.
3. Since the bearing parts and parts surrounding the feed screw are adjusted at the time of shipment, unnecessary movement of the adjusted parts should be avoided.
4. This actuator can be used without lubrication. In the event that lubrication is applied, a lithium family grease (JIS No. 2) should be used.
5. If the actuator will be used in an atmosphere where it will be exposed to cutting chips, dust, cutting oil (water, liquids), etc., a cover or other protection should be provided.
6. Operate with cables secured.
Avoid bending cables at sharp angles where they enter the actuator, and also be sure that cables do not move easily.

Warning

1. Confirm the specifications.

The products in this catalog should not be used outside the range of specifications, as this may cause damage or malfunction, etc. (Refer to specifications)

\triangle Caution

1. Confirmation of actuator operation should first be performed at low speed. Operation at normal speeds should be performed only after confirming that no problems exist.

Mounting

Caution

1. Do not use until you verify that the equipment can operate properly.
2. The product should be mounted and operated after thoroughly reading the instruction manual and understanding its contents.
3. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause a loss of parallelism in the mounting surfaces, rattling in the guide unit, an increase in sliding resistance or other problems.
4. When attaching a work load, do not apply strong impact shock or a large moment, etc.
If an outside force exceeding the allow able moment is applied, this may cause rattling in the guide unit, an increase in sliding resistance or other problems.
5. When connecting a load having an external support or guide mechanism, be sure to select a suitable connection method and perform careful alignment.
6. Take care that cables do not get caught by actuator movement.

Series LJ1
Actuator Precautions 2
Be sure to read before handling.

Mounting
 Caution

7. Do not use in locations where there is vibration or impact shock. Contact SMC before using in this kind of environment, as damage may result.
8. Give adequate consideration to the disposition of wiring, etc. at the time of mounting. If wiring is forced into unreasonable positions, this may lead to breaks in the wiring and result in malfunction.
9. Avoid use in the following environments.
10. Locations with a lot of debris or dust, or where cutting chips may enter.
11. Locations where the ambient temperature is outside the range of 5 to $40^{\circ} \mathrm{C}$.
12. Locations where ambient humidity is outside the range of 10 to 90%.
13. Locations where corrosive or com bustible gases are generated.
14. Locations where strong magnetic or electric fields are generated
15. Locations where direct vibration or impact shock, etc. will be applied to the actuator unit.

Grounding

Caution

1. Be sure to carry out grounding in order to ensure the noise tolerance of the actuator.
2. Dedicated grounding should be used as much as possible. Grounding should be to a type 3 ground. (Ground resistance of 100Ω or less.)
3. Ground wires should have a cross sectional area of $2 \mathrm{~mm}^{2}$ or more. Grounding should be as close as possible to the actuator, and the ground wires should be as short as possible.
4. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Caution

1. Do not use in environments where there is a danger of corrosion.
2. In dirty areas, such as dusty locations or where water, oil, etc. splash on the equipment, take suitable measures to protect the rod.
3. Do not use in an environment where there is a strong magnetic field.

Maintenance

Warning

1. Maintenance should be done according to the procedures indicated in the instruction manual.
If handled improperly, malfunction and damage of machinery or equipment may occur.
2. Demounting of equipment.

When equipment is to be demounted, first confirm that measures are in place to prevent dropping or runaway of driven objects, etc., and then proceed after shutting off the electric power. When starting up again, proceed with caution after confirming that conditions are safe.

Series LJ1
Auto Switch Common Precautions 1
Be sure to read before handling.
Refer to the main catalog sections for detailed precautions on each series.

Design \& Selection

\triangle Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications of current load, voltage, temperature or impact.
2. Wiring should be kept as short as possible.
Although wire length should not affect switch function, use a wire 100 m or shorter.
3. Do not use a load that generates surge voltage.
Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a builtin surge absorbing element.
4. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Mounting \& Adjustment

© Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($1000 \mathrm{~m} / \mathrm{s}^{2}$ or more) while handling.
Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry an actuator by the auto switch lead wires.
Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper fastening torque.
When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position.
4. Mount a switch at the center of the operating range.
Adjust the mounting position of an auto switch so that the magnet stops at the center of the operating range (the range in which a switch is ON). If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.

Series LJ1
Auto Switch Common Precautions 2
Be sure to read before handling.
Refer to the main catalog sections for detailed precautions on each series.

Wiring
 Warning

1. Avoid repeatedly bending or stretching lead wires.
Broken lead wires will result from applying bending stress or stretching force to the lead wires.
2. Confirm proper insulation of wiring.
Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
3. Do not wire with power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.
4. Do not allow short circuit of loads.
All models of PNP output type switches do not have built-in short circuit prevention circuits. If loads are short circuited the switches will be instantly damaged. Take special care to avoid reverse wiring with the brown (red) power supply line and the black (white) output line on 3 wire type switches.

5. Avoid incorrect wiring.

If connections are reversed (power supply line + and power supply line -) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line $(+)$ is connected to the blue (black) wire and the power supply line (-) is connected to the black (white) wire, the switch will be damaged.

Maintenance

\triangle Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Secure and tighten switch mounting screws.
If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.
To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.

Operating Environment

Warning

1. Never use in an atmosphere of explosive gases.
The structure of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside cylinders will become demagnetized.
3. Do not use in an environment where the auto switch will be continually exposed to water.
Do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals. Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected.
6. Do not use in an area where surges are generated.
<Solid state switch>
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switch. Avoid sources of surge generation and disorganized lines.

Operating Environment

Warning

7. Avoid accumulation of iron powder or close contact with magnetic substances.
When a large amount of ferrous powder such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the cylinder.

Other

Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc.

Series LJ1 Specific Product Precautions
Be sure to read before handling.

1. Since the slide bearing type is supported by a resin slide bearing, take particular care to avoid subjecting it to strong impacts or large moment, etc. when mounting the unit.
2. Mount the slide screw type in a horizontal position.

Brakes
 \triangle Caution

1. Since sparks may be generated due to slippage when starting and braking, do not operate this product in environments with oils or combustible gases, etc. where there is a danger of ignition or explosion.
2. This product cannot be used for ordinary braking.
3. This brake is a deenergized operation type designed exclusively for holding and emergency stopping. If used repeatedly for braking under ordinary circumstances, its original function will be degraded within a short time and eventually the brake will no longer disengage. Continued use under these conditions will cause failure such as burning of the brake, loss of braking force or runaway of the electric actuator.
4. Do not allow hands or fingers, etc. to be caught in the mechanism.
Even when the actuator is stopped, the armature moves in an axial direction when the power is turned ON and OFF. If this sliding part is touched with the fingers, they may be caught and injured. Be sure the cover is in place before turing the power ON or OFF.

Brakes
 Caution

5. Do not touch the brake with bare hands during operation.
The surface temperature of the brake unit may rise as high as $90^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, due to heat from friction and heat generated by the internal coil. Since burns will result if touched, never allow hands or fingers, etc. to touch the brake unit during operation. The surface may even become hot due to the flow of electric current alone, and therefore, the brake unit should not be touched at any time.

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE	ASIA	NORTH AMERICA
AUSTRIA	CHINA	CANADA
SMC Pneumatik GmbH.	SMC (China) Co., Ltd.	SMC Pneumatics (Canada) Ltd.
CZECH	HONG KONG	MEXICO
SMC Czech s.r.o.	SMC Pneumatics (Hong kong) Ltd.	SMC Corporation (Mexico) S.A. de C.V.
FRANCE	INDIA	USA
SMC Pneumatique SA	SMC Pneumatics (India) Pvt. Ltd.	SMC Pneumatics Inc.
GERMANY	MALAYSIA	
SMC Pneumatik GmbH	SMC Pneumatics (S.E.A.) Sdn. Bhd.	SOUTH AMERICA
HUNGARY	PHILIPPINES	ARGENTINA
SMC Hungary Kft.	SMC Pneumatics (Philippines), Inc.	SMC Argentina S.A.
IRELAND	SINGAPORE	BOLIVIA
SMC Pneumatics (Ireland) Ltd.	SMC Pneumatics (S.E.A.) Pte. Ltd.	SMC Pneumatics Bolivia S.R.L.
ITALY/ROMANIA	SOUTH KOREA	CHILE
SMC Italia S.p.A.	SMC Pneumatics Korea Co., Ltd.	SMC Pneumatics (Chile) S.A.
NETHERLANDS	TAIWAN	VENEZUELA
SMC Controls BV.	SMC Pneumatics (Taiwan) Co., Ltd.	SMC Neumatica Venezuela S.A.
SLOVAKIA	THAILAND	
SMC Slovakia s.r.o.	SMC Thailand Ltd.	OCEANIA
SLOVENIA		AUSTRALIA
SMC Slovenia d.o.c.		SMC Pneumatics (Australia) Pty. Ltd.
SPAIN/PORTUGAL		NEW ZEALAND
SMC Espana, S.A.		SMC Pneumatics (N.Z.) Ltd.
SWEDEN		
SMC Pneumatics Sweden AB		
SWITZERLAND		
SMC Pneumatik AG.		
UK		
SMC Pneumatics (U.K.) Ltd.		

SMC CORPORATION

1-16-4 Shimbashi, Minato-ku, Tokyo 105 JAPAN Tel: 03-3502-2740 Fax: 03-3508-2480

Низкопрофильный линейный электрический привод с направляющими повышенной жесткости
 LG1

-" Низкий профиль
-" Высокая точность перемещения присоединительной площадки
-" Три типа ходовых винтов
-" Исполнения без соединительной муфтты между валом двигателя и ходовым винтом (только со стандартным двигателем)
и с соединительной муфтой, допускающей установку нестандартных двигателей (по согласованию с SMC)
-" Два способа крепления корпуса - снизу и сверху (сквозь корпус)

Текнические характеристики

Длина хода (мм)			100	200	300	400	500	600	700	800	900	1000	1200
Диапазон рабочих температур (${ }^{\circ} \mathrm{C}$)			5~60										
Максимальная сила нагружения(H)	Шариковый винт	10 mm	300				-						
		20 mm	-				300						-
	Винт скольжения	20 mm	150										
Максимальная скорость (мм/с)	Шариковый ВИНТ	10 mm	500				-						
		20 mm	-				1000		930	740	600	500	-
	Винт скольжения	20 mm	500										
Точность	Шариковый винт		$\pm 0.02 \sim 0.05$										
позиционирования (мм)	Винт скольжения		± 0.1										
Bec (кг)	Шариковый винт	Алюм. корпус	5.3	6.1	6.9	7.7	8.5	9.3	10.1	10.9	11.7	12.5	-
		Стальной корпус	8.3	9.6	10.8	12	13.3	14.5	15.8	17.1	18.3	19.6	-
	Винт скольжения	Алюм. корпус	5.8	6.7	7.6	8.5	9.4	10.2	11.1	12.0	12.9	13.8	15.9
		Стальной корпус	9.1	10.5	11.9	13.2	14.6	16.0	17.4	18.8	20.1	21.6	24.9
Мощность (Вт)			100										

Номер для заказа

Комбинации длины хода и шага винта подачи

Модель	Длина хода										
	100	200	300	400	500	600	700	800	900	1000	1200
LG1HITEIPA	+	+	+	+	-	-	-	-	-	-	-
	+	+	+	+	-	-	-	-	-	-	-
	-	-	-	-	+	+	+	+	+	+	-
LG1HItelanc	-	-	-	-	+	+	+	+	+	+	-
LG1HItels	+	+	+	+	+	+	+	+	+	+	+

SSMC

Electric Actuator with Integrated Guide

Light-weight, compact electric Frame-type linear guide has one-piece

Space saving, light weight

LTF6 work piece mounting section dimensions \quad LTF8 work piece mounting section dimensions

Overall length***	357.5 mm	412 mm
Weight*	2.2 kg	4.6 kg
Maximum stroke	600 mm	1000 mm

* Values of the horizontal mounting type with standard motor and 100 mm stroke

Table traveling accuracy

Lead screw
Ground ball screw Rolled ball screw

Simplified Selection Flow Chart single Axis Electric Actuator Series LTF
(AC Servomotor)

Series	Brake	Work load kg	Maximum speed mm / s	Positioning repeatability mm	Lead screw	Guide type	Motor type	Capacity
Horizontal mounting specification Series LTF	Without motor brake	15		± 0.02	Ground ball screw	Frame-type linear guide	Standard motor [Tamagawa Seiki Co., Ltd.] Non-standard motor [Matsushita Electric] Industrial Co., Ltd. Mitsubishi Electric Corporation Yaskawa Electric Corporation	100W
				± 0.05	Rolled ball screw			
		25	1000	± 0.02	Ground ball screw			200W
				± 0.05	Rolled ball screw			
		30	300	± 0.02	Ground ball screw			100W
				± 0.05	Rolled ball screw			
		50	500	± 0.02	Ground ball screw			200W
				± 0.05	Rolled ball screw			
Vertical mounting specification Series LTF	With motor brake	3	500	± 0.02	Ground ball screw	Frame-type linear guide	Standard motor [Tamagawa Seiki Co., Ltd.]	100W
				± 0.05	Rolled ball screw			
		5	1000	± 0.02	Ground ball screw			200W
				± 0.05	Rolled ball screw		Non-standard motor [Matsushita Electric Industrial Co., Ltd. Mitsubishi Electric Corporation Yaskawa Electric Corporation	
		6	300	± 0.02	Ground ball screw			100W
				± 0.05	Rolled ball screw			
		10	500	± 0.02	Ground ball screw			200W
				± 0.05	Rolled ball screw			

[^11]
actuator requires small mounting space structure with integrated linear guide and frame

厅SMC
Features 2

Gsnc

Electric Actuator with Integrated Guide Series LTF

Part Number Designations

 model selection.

Series LTF6

Ground Ball Screw

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.2	2.7	3.2	3.7	4.2	4.7
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}, 6 \mathrm{~mm}$ lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2HFD- $\square \square$ (Refer to page 73 for details.)					

Allowable Moment (N.m)
Allowable dynamic moment

[^12]
Dimensions/LTF6E \square PF

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square PF- 100- $\square \square$	100	2
LTF6E \square PF- 200- $\square \square$	200	3
LTF6E \square PF- 300- $\square \square$	300	4
LTF6E \square PF- 400- $\square \square$	400	5
LTF6E \square PF- 500- $\square \square$	500	6
LTF6E \square PF- 600- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.2	2.7	3.2	3.7	4.2	4.7
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	15					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2HH $\square-\square \square$ (Refer to page 73 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

	orientation vement direction		1TF6	
			${ }^{\text {E. }}{ }^{200}$	
$\begin{aligned} & \text { 을 } \\ & \underline{\overline{\bar{O}}} \\ & \text { 区 } \end{aligned}$				
$\begin{aligned} & \text { ס } \\ & \underset{\text { N }}{3} \\ & \text { خ } \end{aligned}$				

[^13]
Standard Motor/Horizontal Mount Specification
 Series LTF6

Dimensions/LTF6E \square PH

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square PH- 100- $\square \square$	100	2
LTF6E \square PH- 200- $\square \square$	200	3
LTF6E \square PH- 300- $\square \square$	300	4
LTF6E \square PH- 400- $\square \square$	400	5
LTF6E \square PH- 500- $\square \square$	500	6
LTF6E \square PH- 600- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

Rolled Ball Screw

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.2	2.7	3.2	3.7	4.2	4.7
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2HFD- $\square \square$ (Refer to page 73 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^14]
Standard Motor/Horizontal Mount Specification
 Series LTF6

Dimensions/LTF6E \square NF

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square NF- 100- $\square \square$	100	2
LTF6E \square NF- 200- $\square \square$	200	3
LTF6E \square NF- 300- $\square \square$	300	4
LTF6E \square NF- 400- $\square \square$	400	5
LTF6E \square NF- 500- $\square \square$	500	6
LTF6E \square NF- 600- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Specifications

Allowable Moment (N.m)
Allowable dynamic moment

[^15]
Standard Motor/Horizontal Mount Specification

Dimensions/LTF6E \square NH

Scale: 18\%

Model	Stroke	\mathbf{n}_{1}
LTF6E \square NH- 100- $\square \square$	100	2
LTF6E \square NH- 200- $\square \square$	200	3
LTF6E \square NH- 300- $\square \square$	300	4
LTF6E \square NH- 400- $\square \square$	400	5
LTF6E \square NH- 500- $\square \square$	500	6
LTF6E \square NH- 600- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	50									
	Rated thrust	N	360									
	Maximum speed	mm/s	500						440	350	290	240
	Positioning repeatability	mm	± 0.02									
Main parts	Motor		AC servomotor (200W)									
	Encoder		Incremental system									
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model		LC1-1H3HHD- $\square \square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^16]
Dimensions/LTF8F \square PH

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF8F \square PH- 100- $\square \square$	100	2
LTF8F \square PH- 200- \square	200	3
LTF8F \square PH- 300- $\square \square$	300	4
LTF8F \square PH- 400- $\square \square$	400	5
LTF8F \square PH- 500- $\square \square$	500	6
LTF8F \square PH- 600- $\square \square$	600	7
LTF8F \square PH- 700- $\square \square$	700	8
LTF8F \square PH- 800- $\square \square$	800	9
LTF8F \square PH- 900- $\square \square$	900	10
LTF8F \square PH-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	1000	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

How to Order

Specifications

Standard stroke $\quad \mathrm{mm}$		100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3HLD- $\square \square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^17]
Dimensions/LTF8F \square PL

Model	Stroke	\mathbf{n}_{1}
LTF8F \square PL- 100- $\square \square$	100	2
LTF8F \square PL- 200- $\square \square$	200	3
LTF8F \square PL- 300- $\square \square$	300	4
LTF8F \square PL- 400- $\square \square$	400	5
LTF8F \square PL- 500- $\square \square$	500	6
LTF8F \square PL- 600- \square	600	7
LTF8F \square PL- 700- \square	700	8
LTF8F \square PL- 800- $\square \square$	800	9
LTF8F \square PL- 900- $\square \square$	900	10
LTF8F \square PL-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	50									
	Rated thrust	N	360									
	Maximum speed	mm/s	500						440	350	290	240
	Positioning repeatability	mm	± 0.05									
Main parts	Motor		AC servomotor (200W)									
	Encoder		Incremental system									
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model		LC1-1H3HHD- $\square \square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^18]
Dimensions/LTF8F \square NH

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF8F \square NH- 100- $\square \square$	100	2
LTF8F \square NH- 200- \square	200	3
LTF8F \square NH- 300- $\square \square$	300	4
LTF8F \square NH- 400- $\square \square$	400	5
LTF8F \square NH- 500- $\square \square$	500	6
LTF8F \square NH- 600- $\square \square$	600	7
LTF8F \square NH- 700- $\square \square$	700	8
LTF8F \square NH- 800- $\square \square$	800	9
LTF8F \square NH- 900- $\square \square$	900	10
LTF8F \square NH-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

[^19]

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

How to Order

Specifications

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight kg	4.6	5.5	6.3	7.1	8.0	8.8	9.6	10.5	11.3	12.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model	LC1-1H3HLD- $\square \square$ (Refer to page 73 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^20]
Dimensions/LTF8F■NL

Model	Stroke	\mathbf{n}_{1}
LTF8F \square NL- 100- $\square \square$	100	2
LTF8F \square NL- 200- $\square \square$	200	3
LTF8F \square NL- 300- $\square \square$	300	4
LTF8F \square NL- 400- $\square \square$	400	5
LTF8F \square NL- 500- $\square \square$	500	6
LTF8F \square NL- 600- $\square \square$	600	7
LTF8F \square NL- 700- $\square \square$	700	8
LTF8F \square NL- 800- $\square \square$	800	9
LTF8F \square NL- 900- \square	900	10
LTF8F \square NL-1000- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	1000	0.6	0.7	0.9	1.7	2.7	
	100	0.7	0.9	1.4	1.9		

[^21]

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Motor/switch entry direction

Specifications

Standard stroke		mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load	kg	6					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VFD- $\square \square$ (Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^22]
Standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6E \square PF

reference plane* Section AA

Model	Stroke	\mathbf{n}_{1}
LTF6E \square PF- 100K- $\square \square$	100	2
LTF6E \square PF- 200K- \square	200	3
LTF6E \square PF- 300K- \square	300	4
LTF6E \square PF- 400K- \square	400	5
LTF6E \square PF- 500K- $\square \square$	500	6
LTF6E \square PF-600K- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

Vertical Mount

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm/s	500					390
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VH $\square-\square \square$ (Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^23]Refer to page 71 for deflection data.

Standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6E \square PH

reference plane Section AA

Model	Stroke	\mathbf{n}_{1}
LTF6E \square PH- 100K- $\square \square$	100	2
LTF6E \square PH- 200K- $\square \square$	200	3
LTF6E \square PH- 300K- $\square \square$	300	4
LTF6E \square PH- 400K- $\square \square$	400	5
LTF6E \square PH- 500K- $\square \square$	500	6
LTF6E \square PH-600K- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	6					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VFD- $\square \square$ (Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^24]Refer to page 71 for deflection data.

Standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6E \square NF

reference plane* Section AA

Model	Stroke	\mathbf{n}_{1}
LTF6E \square NF- 100K- $\square \square$	100	2
LTF6E \square NF- 200K- \square	200	3
LTF6E \square NF- 300K- \square	300	4
LTF6E \square NF- 400K- \square	400	5
LTF6E \square NF- 500K- $\square \square$	500	6
LTF6E \square NF-600K- $\square \square$	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

Rolled Ball Screw 100.

Specifications

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight	kg	2.4	2.9	3.4	3.9	4.4	4.9
	Operating temperature range		5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm/s	500					390
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
Controller	Model		LC1-1H2VH $\square-\square \square$ (Refer to page 73 for details.)					
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)					

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^25]Refer to page 71 for deflection data.

Standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6E \square NH

reference plane Section AA

Model	Stroke	\mathbf{n}_{1}
LTF6E \square NH- 100K- $\square \square$	100	2
LTF6E \square NH- 200K- \square	200	3
LTF6E \square NH- 300K- \square	300	4
LTF6E \square NH- 400K- \square	400	5
LTF6E \square NH- 500K- \square	500	6
LTF6E \square NH- 600K- \square	600	7

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

How to Order

Specifications

Standard stroke		mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)									
	Work load	kg	10									
	Rated thrust	N	360									
	Maximum speed	mm / s	500						440	350	290	240
	Positioning repeatability	mm	± 0.02									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model		LC1-1H3VFD- $\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Dimensions/LTF8F \square PH

Model	Stroke	\mathbf{n}_{1}
LTF8F \square PH- 100K- $\square \square$	100	2
LTF8F \square PH- 200K- $\square \square$	200	3
LTF8F \square PH- 300K- $\square \square$	300	4
LTF8F \square PH- 400K- \square	400	5
LTF8F \square PH- 500K- \square	500	6
LTF8F \square PH- 600K- \square	600	7
LTF8F \square PH- 700K- \square	700	8
LTF8F \square PH- 800K- \square	800	9
LTF8F \square PH- 900K- \square	900	10
LTF8F \square PH-1000K- \square	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Standard Motor

Series LTF8

Ground Ball Screw
Vertical Mount
200_{w}

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	5									
	Rated thrust	N	180									
	Maximum speed	mm / s	1000						890	710	580	480
	Positioning repeatability	mm	± 0.02									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model		LC1-1H3VLD- $\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Dimensions/LTF8F \square PL

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$
LTF8F \square PL- 100K- $\square \square$	100	2
LTF8F \square PL- 200K- \square	200	3
LTF8F \square PL- 300K- $\square \square$	300	4
LTF8F \square PL- 400K- $\square \square$	400	5
LTF8F \square PL- 500K- \square	500	6
LTF8F \square PL- 600K- \square	600	7
LTF8F \square PL- 700K- \square	700	8
LTF8F \square PL- 800K- \square	800	9
LTF8F \square PL- 900K- $\square \square$	900	10
LTF8F \square PL-1000K- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed $(\mathbf{m m} / \mathbf{s})$	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF8

How to Order

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	10									
	Rated thrust	N	360									
	Maximum speed	mm / s	500						440	350	290	240
	Positioning repeatability	mm	± 0.05									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model		LC1-1H3VHD- $\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment (N.m)
Allowable dynamic moment

Dimensions/LTF8F \square NH

Model	Stroke	\mathbf{n}_{1}
LTF8F \square NH- 100K- $\square \square$	100	2
LTF8F \square NH- 200K- $\square \square$	200	3
LTF8F \square NH- 300K- $\square \square$	300	4
LTF8F \square NH- 400K- $\square \square$	400	5
LTF8F \square NH- 500K- \square		
LTF8F \square NH- 600K- $\square \square$	500	6
LTF8F \square NH- 700K- $\square \square$	600	7
LTF8F \square NH- 800K- $\square \square$	700	8
LTF8F \square NH- 900K- $\square \square$	800	9
LTF8F \square NH-1000K- $\square \square$	900	10

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Standard Motor

Series LTF8

Motor Output Rolled Ball Screw
200_{w}

Specifications

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight	kg	5.0	5.9	6.7	7.5	8.4	9.2	10.0	10.9	11.7	12.5
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	5									
	Rated thrust	N	180									
	Maximum speed	mm / s	1000						890	710	580	480
	Positioning repeatability	mm	± 0.05									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
Controller	Model		LC1-1H3VLD- $\square \square$ (Refer to page 73 for details.)									
Regenerative absorption unit	Model		LC7R-K1 \square A $\square \square$ (Refer to page 86 for details.)									

Note) Be sure to use a regenerative absorption unit with this product.

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

[^26]a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
Refer to page 71 for deflection data.

Dimensions/LTF8F \square NL

Model	Stroke	\mathbf{n}_{1}
LTF8F \square NL- 100K- $\square \square$	100	2
LTF8F \square NL- 200K- \square	200	3
LTF8F \square NL- 300K- $\square \square$	300	4
LTF8F \square NL- 400K- $\square \square$	400	5
LTF8F \square NL- 500K- \square	500	6
LTF8F \square NL- 600K- $\square \square$	600	7
LTF8F \square NL- 700K- $\square \square$	700	8
LTF8F \square NL- 800K- $\square \square$	800	9
LTF8F \square NL- 900K- \square	900	10
LTF8F \square NL-1000K- $\square \square$	1000	11

* The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting onto equipment. Refer to pages starting with 68 for mounting.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LTF6

How to Order

Standard stroke		mm	100	200	300	400	500	600
Performance	Body weight (without motor)		1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$		5 to 40 (with no condensation)					
	Work load	kg	30					
	Rated thrust	N	300					
	Maximum speed	mm / s	300					230
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W)					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)

Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece center of gravity (mm)

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{PF}(\mathrm{X} 10)$

Model	Stroke	n1	n2
LTF6 \square E \square PF- 100- $\square \square$-X10	100	2	1
LTF6 \square E \square PF- 200- $\square \square$-X10	200	3	1
LTF6 \square E \square PF- 300- $\square \square$-X10	300	4	1
LTF6 \square E \square PF- 400- $\square \square$-X10	400	5	1
LTF6 \square E \square PF-500- $\square \square$-X10	500	6	2
LTF6 \square E \square PF-600- $\square \square$-X10	600	7	2

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)				1	10	100	
300	600						
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1A	MSD011P1E	103
		200/230	MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1	86.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP	94.5
		200/230	SGME-01AF12	SGDE-01AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

How to Order

	Standard stroke mm	100	200	300	400	500	600
Performance	Body weight (without motor) kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load kg	15					
	Rated thrust N	180					
	Maximum speed mm / s	500					390
	Positioning repeatability mm	± 0.02					
Main parts	Motor	AC servomotor (100W)					
	Encoder	Incremental system					
	Lead screw	Ground ball screw $\varnothing 10 \mathrm{~mm}$, 10mm lead					
	Guide	Frame-type linear guide					
	Motor/Screw connection	With coupling					
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment (N.m)
Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{PH}(\mathrm{X} 10)$

Scale: 20\%
$\left(2 \times n_{1}\right)-ø 5.5$, Drill through ø11.5, counter bore depth 5

Section AA (Sensor mounting dimensions)

D section detail

(Sensor rail dimensions)

E section detail (Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF6 \square E \square PH- 100- $\square-$-X10	100	2	1
LTF6 \square E \square PH- 200- $\square \square-$ X10	200	3	1
LTF6 \square E \square PH- 300- $\square-$-X10	300	4	1
LTF6 $\square \square$ PH- 400- $\square-$-X10	400	5	1
LTF6 \square E \square PH- 500- $\square-$-X10	500	6	2
LTF6 \square E \square PH- 600- $\square-$-X10	600	7	2

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	300	600		
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension
(mm)					

[^27]
How to Order

	Standard stroke mm	100	200	300	400	500	600
Performance	Body weight (without motor) kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load kg	30					
	Rated thrust N	300					
	Maximum speed mm / s	300					230
	Positioning repeatability mm	± 0.05					
Main parts	Motor	AC servomotor (100W)					
	Encoder	Incremental system					
	Lead screw	Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6mm lead					
	Guide	Frame-type linear guide					
	Motor/Screw connection	With coupling					
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

Dimensions/LTF6 $\square E \square \mathrm{NF}(\mathrm{X} 10)$
Scale: 20\%
$\left(2 \times n_{1}\right)-ø 5.5$, Drill through ø11.5, counter bore depth 5

Section AA (Sensor mounting dimensions)

D section detail

(Sensor rail dimensions)

E section detail (Switch rail T-slot dimensions)

Model	Stroke	n1	n2
LTF6 \square E \square NF- 100- $\square \square$-X10	100	2	1
LTF6 \square E \square NF- 200- $\square \square$-X10	200	3	1
LTF6 \square E \square NF- 300- $\square \square$-X10	300	4	1
LTF6 \square E \square NF- 400- $\square \square$-X10	400	5	1
LTF6 \square E \square NF-500- $\square \square$-X10	500	6	2
LTF6 \square E \square NF-600- $\square \square$-X10	600	7	2

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	300	600		
	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	300	0.5	0.6	1.2	2.5	4.5	
	150	0.6	0.9	1.6	2.6		

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1A	MSD011P1E	103
		200/230	MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1	86.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP	94.5
		200/230	SGME-01AF12	SGDE-01AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

How to Order

	Standard stroke mm	100	200	300	400	500	600
Performance	Body weight (without motor) kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load kg	15					
	Rated thrust N	180					
	Maximum speed mm / s	500					390
	Positioning repeatability mm	± 0.05					
Main parts	Motor	AC servomotor (100W)					
	Encoder	Incremental system					
	Lead screw	Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide	Frame-type linear guide					
	Motor/Screw connection	With coupling					
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

Non-standard Motor/Horizontal Mount Specification Series LTF6

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{NH}(\mathbf{X 1 0)}$
Scale: 20\%
$\left(2 \times n_{1}\right)-ø 5.5$, Drill through $\varnothing 11.5$, counter bore depth 5

Section AA (Sensor mounting dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF6 \square E \square NH- 100- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF6 \square E \square NH- 200- $\square-\mathbf{- X 1 0}$	200	3	1
LTF6 \square E \square NH- 300- $\square-\mathbf{- X 1 0 ~}$	300	4	1
LTF6 $\square \square$ NH- 400- $\square-\mathbf{X 1 0}$	400	5	1
LTF6 \square E \square NH- 500- $\square-\mathbf{- X 1 0 ~}$	500	6	2
LTF6 \square E \square NH- 600- $\square-\mathbf{- X 1 0 ~}$	600	7	2

Section AA
*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)	1	10	100	300	600		
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1A	MSD011P1E	103
		200/230	MSM012P1A	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13	MR-C10A1	86.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12	SGDE-01BP	94.5
		200/230	SGME-01AF12	SGDE-01AP	

[^28]
How to Order

	Standard stroke $\quad \mathrm{mm}$	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	50									
	Rated thrust N	360									
	Maximum speed mm/s	500						440	350	290	240
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment (N.m)
Allowable dynamic moment

[^29]
*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

E section detail (Switch rail T-slot dimensions)

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PH- 100- $\square \square$-X10	100	2	1
LTF8 \square F \square PH- 200- $\square \square$-X10	200	3	1
LTF8 \square F \square PH- 300- $\square-$-X10	300	4	1
LTF8 \square F \square PH- 400- $\square-$-X10	400	5	1
LTF8 \square F \square PH- 500- $\square \square$-X10	500	6	2

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PH- 600- $\square \square-\mathbf{X 1 0 ~}$	600	7	2
LTF8 \square F \square PH- 700- $\square \square-\mathbf{X 1 0 ~}$	700	8	2
LTF8 \square F \square PH- 800- $\square \square-\mathbf{X 1 0 ~}$	800	9	2
LTF8 \square F \square PH- 900- $\square \square-\mathbf{X 1 0 ~}$	900	10	2
LTF8 \square F \square PH-1000- $\square \square-X 10$	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1A	MSD021P1E	95
		200/230	MSM022P1A	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23	MR-C20A1	89
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12	SGDE-02BP	96.5
		200/230	SGME-02AF12	SGDE-02AP	

[^30]
How to Order

	Standard stroke $\quad \mathrm{mm}$	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm / s	1000						890	710	580	480
	Positioning repeatability mm	± 0.02									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me : Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

E section detail (Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PL- 100- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF8 \square F \square PL- 200- $\square \square-\mathbf{X 1 0}$	200	3	1
LTF8 \square F \square PL- 300- $\square-\mathbf{- X 1 0}$	300	4	1
LTF8 \square F \square PL- 400- $\square-\mathbf{X 1 0 ~}$	400	5	1
LTF8 \square F \square PL- 500- $\square-\mathbf{- X 1 0 ~}$	500	6	2

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PL- 600- $\square \square-\mathbf{X 1 0}$	600	7	2
LTF8 \square F \square PL- 700- $\square-$-X10	700	8	2
LTF8 \square F \square PL- 800- $\square \square$-X10	800	9	2
LTF8 \square F \square PL- 900- $\square-\mathbf{- X 1 0 ~}$	900	10	2
LTF8 \square F \square PL-1000- $\square-$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
	10	0.6	1.6	10.6	50.6	100.6	
Speed (mm/s)	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1A	MSD021P1E	95
		200/230	MSM022P1A	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23	MR-C20A1	89
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12	SGDE-02BP	96.5
		200/230	SGME-02AF12	SGDE-02AP	

[^31]
How to Order

	Standard stroke $\quad \mathrm{mm}$	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	50									
	Rated thrust N	360									
	Maximum speed $\quad \mathrm{mm} / \mathrm{s}$	500						440	350	290	240
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

m : Transfer load (kg)
a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$)
Me: Allowable dynamic moment
L : Overhang to work piece
center of gravity (mm)

Refer to page 71 for deflection data.

Dimensions/LTF8 $\square \mathrm{F} \square \mathbf{N H}(\mathbf{X 1 0})$

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NH- 100- $\square-\mathbf{- X 1 0}$	100	2	1
LTF8 \square F \square NH- 200- \square-X10	200	3	1
LTF8 \square F \square NH- 300- $\square \square$-X10	300	4	1
LTF8 \square FH- 400- \square-X10	400	5	1
LTF8 \square F \square NH- 500- $\square-$-X10	500	6	2

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NH- 600- $\square-\mathbf{X 1 0}$	600	7	2
LTF8 \square F \square NH- 700- $\square-\mathbf{X 1 0}$	700	8	2
LTF8 \square F \square NH- 800- $\square \square-\mathbf{X 1 0 ~}$	800	9	2
LTF8 \square F \square NH- 900- $\square \square-\mathbf{X 1 0 ~}$	900	10	2
LTF8 \square F \square NH-1000- $\square \square-X 10$	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$	MSM021P1A	MSD021P1E	95
		MSM022P1A	MSD023P1E	89	
	200	$100 / 115$	HC-PQ23		MR-C20A

[^32]
How to Order

	Standard stroke mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor) kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load kg	25									
	Rated thrust N	180									
	Maximum speed mm/s	1000						890	710	580	480
	Positioning repeatability mm	± 0.05									
Main parts	Motor	AC servomotor (200W)									
	Encoder	Incremental system									
	Lead screw	Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide	Frame-type linear guide									
	Motor/Screw connection	With coupling									
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{NL}(\mathrm{X10})$

Scale: 13\%

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NL- 100- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF8 \square F \square NL- 200- $\square \square$-X10	200	3	1
LTF8 \square F \square NL- 300- $\square-$-X10	300	4	1
LTF8 \square F \square NL- 400- $\square-$ X10	400	5	1
LTF8 $\square F \square$ NL- 500- $\square \square$-X10	500	6	2

Model	Stroke	n1	n2
LTF8 \square F \square NL- 600- $\square \square$-X10	600	7	2
LTF8 \square F \square NL- 700- $\square \square$-X10	700	8	2
LTF8 \square F \square NL- 800- $\square \square$-X10	800	9	2
LTF8 \square F \square NL- 900- $\square \square$-X10	900	10	2
LTF8 \square F \square NL-1000- $\square \square$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1A	MSD021P1E	95
		200/230	MSM022P1A	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23	MR-C20A1	89
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12	SGDE-02BP	96.5
		200/230	SGME-02AF12	SGDE-02AP	

[^33]

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	6					
	Rated thrust	N	300					
	Maximum speed	mm/s	300					230
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}$, 6 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit			Refer to the selection guide below.					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Dimensions/LTF6 $\square \square \square$ PF(X10)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF6 \square E \square PF- 100K- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF6 \square E \square PF- 200K- $\square \square-$ X10	200	3	1
LTF6 $\square \square$ EF- 300K- $\square \square-$ X10	300	4	1
LTF6 $\square \square$ EF- 400K- $\square \square-$ X10	400	5	1
LTF6 $\square \square$ EFF- 500K- $\square \square-X 10$	500	6	2
LTF6 $\square \square$ EF- 600K- $\square \square-$ X10	600	7	2

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)				1	10	100	
300	600						
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1B	MSD011P1E	135
		200/230	MSM012P1B	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13B	MR-C10A1	114.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12B	SGDE-01BP	135
		200/230	SGME-01AF12B	SGDE-01AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

	Standard stroke	mm	100	200	300	400	500	600
Performance	Body weight (without motor)	kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.02					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Ground ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit			Refer to the selection guide below.					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF6

Dimensions/LTF6 $\square \square \square \mathrm{PH}(\mathrm{X} 10)$

	Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5
	100	0.5	0.6	1.5	3.5	6.5
	250	0.5	0.6	0.9	1.7	2.9
	500	0.5	0.6	0.8	1.2	1.8

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1B	MSD011P1E	135
		200/230	MSM012P1B	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13B	MR-C10A1	114.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12B	SGDE-01BP	135
		200/230	SGME-01AF12B	SGDE-01AP	

[^34]Vertical Mount
Rolled Ball Screw
100.
$.10 \mathrm{~mm} 6_{\mathrm{mm} \text { load }}$

How to Order

Standard stroke		100	200	300	400	500	600
Performance	Body weight (without motor) kg	1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range ${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load kg	6					
	Rated thrust N	300					
	Maximum speed mm/s	300					230
	Positioning repeatability mm	± 0.05					
Main parts	Motor	AC servomotor (100W) with brake					
	Encoder	Incremental system					
	Lead screw	Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 6mm lead					
	Guide	Frame-type linear guide					
	Motor/Screw connection	With coupling					
Switch	Model	Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
		Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
		Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit		Refer to the selection guide below.					

Allowable Moment ($\mathrm{N} \cdot \mathrm{m}$)
Allowable dynamic moment

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{NF}(\mathbf{X 1 0)}$

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	150	0.5	0.6	1.2	2.5	4.5	
	300	0.5	0.6	0.9	1.6	2.6	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1B	MSD011P1E	135
		200/230	MSM012P1B	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13B	MR-C10A1	114.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12B	SGDE-01BP	135
		200/230	SGME-01AF12B	SGDE-01AP	

[^35] driver is optional. Refer to page 66 for part numbers.

How to Order

Standard stroke		mm	100	200	300	400	500	600
Performance	Body weight (without motor)		1.7	2.1	2.6	3.1	3.6	4.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)					
	Work load	kg	3					
	Rated thrust	N	180					
	Maximum speed	mm / s	500					390
	Positioning repeatability	mm	± 0.05					
Main parts	Motor		AC servomotor (100W) with brake					
	Encoder		Incremental system					
	Lead screw		Rolled ball screw $\varnothing 10 \mathrm{~mm}$, 10 mm lead					
	Guide		Frame-type linear guide					
	Motor/Screw connection		With coupling					
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)					
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)					
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)					
Regenerative absorption unit			Refer to the selection guide below.					

Allowable Moment (N.m)
Allowable dynamic moment

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Dimensions/LTF6 $\square \mathrm{E} \square \mathrm{NH}(\mathrm{X10})$
Scale: 20\%
$\left(2 \times n_{1}\right)-\varnothing 5.5$, Drill through $\varnothing 11.5$, counter bore depth 5

Section AA (Sensor mounting dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF6 $\square \mathrm{E} \square$ NH- 100K- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF6 $\square \mathrm{E} \square$ NH- 200K- $\square \square-\mathbf{X 1 0}$	200	3	1
LTF6 $\square \mathrm{E} \square$ NH- 300K- $\square-\mathbf{- X 1 0}$	300	4	1
LTF6 $\square \square$ NH- 400K- $\square-\mathbf{- X 1 0}$	400	5	1
LTF6 $\square \mathrm{E} \square$ NH- 500K- $\square \square-\mathbf{X 1 0 ~}$	500	6	2
LTF6 $\square \mathrm{E} \square$ NH- 600K- $\square \square-\mathbf{X 1 0 ~}$	600	7	2

Section AA
*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 69 for the guidelines for assembly and designing.

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	300	600	
Speed (mm/s)	10	0.5	1.5	10.5	30.5	60.5	
	100	0.5	0.6	1.5	3.5	6.5	
	250	0.5	0.6	0.9	1.7	2.9	
	500	0.5	0.6	0.8	1.2	1.8	

* Values will vary slightly depending on the operating conditions.

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.4 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	100	100/115	MSM011P1B	MSD011P1E	135
		200/230	MSM012P1B	MSD013P1E	
Mitsubishi Electric Corporation	100	100/115	HC-PQ13B	MR-C10A1	114.5
		200/230		MR-C10A	
Yasukawa Electric Corporation	100	100/115	SGME-01BF12B	SGDE-01BP	135
		200/230	SGME-01AF12B	SGDE-01AP	

[^36]Ground Ball Screw
200.
$\odot 15_{\mathrm{mm}} 10_{\mathrm{mm} \text { lead }}$

How to Order

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor)		3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	10									
	Rated thrust	N	360									
	Maximum speed	mm/s	500						440	350	290	240
	Positioning repeatability	mm	± 0.02									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}, 10 \mathrm{~mm}$ lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									
Regenerative absorption unit			Refer to the selection guide below.									

Allowable Moment (N.m)

Allowable dynamic moment

[^37]
Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Non-standard Motor/Vertical Mount Specification Series LTF8

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{PH}(\mathbf{X 1 0})$

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PH- 100K- $\square \square$-X10	100	2	1
LTF8 \square F \square PH- 200K- $\square \square-X 10$	200	3	1
LTF8 \square F \square PH- 300K- $\square-$-X10	300	4	1
LTF8 \square F \square PH- 400K- $\square-$ X10	400	5	1
LTF8 \square F \square PH- 500K- $\square \square$-X10	500	6	2

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square PH- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square PH- 700K- $\square-$-X10	700	8	2
LTF8 \square F \square PH- 800K- $\square \square$-X10	800	9	2
LTF8 \square F \square PH- 900K- $\square \square$-X10	900	10	2
LTF8 \square F \square PH-1000K- $\square-$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	100/115	MSM021P1B	MSD021P1E	128
		200/230	MSM022P1B	MSD023P1E	
Mitsubishi Electric Corporation	200	100/115	HC-PQ23B	MR-C20A1	121
		200/230		MR-C20A	
Yasukawa Electric Corporation	200	100/115	SGME-02BF12B	SGDE-02BP	136
		200/230	SGME-02AF12B	SGDE-02AP	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

How to Order

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor)		3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	5									
	Rated thrust	N	180									
	Maximum speed	mm/s	1000						890	710	580	480
	Positioning repeatability	mm	± 0.02									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Ground ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									
Regenerative absorption unit			Refer to the selection guide below.									

Allowable Moment (N.m)

Allowable dynamic moment

[^38]Refer to page 71 for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

Section AA
(Sensor mounting dimensions)

Section AA

D section detail (Sensor rail dimensions)

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PL- 100K- $\square-$-X10	100	2	1
LTF8 \square F \square PL- 200K- $\square \square-$ X10	200	3	1
LTF8 \square F \square PL- 300K- $\square \square$-X10	300	4	1
LTF8 \square F \square PL- 400K- $\square-$-X10	400	5	1
LTF8 \square F \square PL- 500K- $\square \square-$ X10	500	6	2

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square PL- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square PL- 700K- $\square \square-X 10$	700	8	2
LTF8 \square F \square PL- 800K- $\square-$-X10	800	9	2
LTF8 \square F \square PL- 900K- $\square \square$-X10	900	10	2
LTF8 \square F \square PL-1000K- $\square \square-X 10$	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$		MSD021P1E	128
Mitsubishi Electric Corporation		MSM022P1B	MSD023P1E		
Yasukawa Electric Corporation	200	$100 / 115$	HC-PQ23B	MR-C20A1	121
		$100 / 115$		SGDE-C20A	
	$200 / 230$	SGME-02AF12B	SGDE-02AP	136	

* Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
* For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

How to Order

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor)		3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range		5 to 40 (with no condensation)									
	Work load	kg	10									
	Rated thrust	N	360									
	Maximum speed	mm/s	500						440	350	290	240
	Positioning repeatability	mm	± 0.05									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 10 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									
Regenerative absorption unit			Refer to the selection guide below.									

Allowable Moment (N.m)

Allowable dynamic moment

[^39]Refer to page $\mathbf{7 1}$ for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{NH}(\mathbf{X 1 0)}$

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

Work piece mounting reference plane*1

E section detail (Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	$\mathbf{n}_{\mathbf{2}}$
LTF8 \square F \square NH- 100K- $\square-$-X10	100	2	1
LTF8 \square F \square NH- 200K- $\square \square-$ X10	200	3	1
LTF8 \square F \square NH- 300K- $\square \square-X 10$	300	4	1
LTF8 \square F \square NH- 400K- $\square-$-X10	400	5	1
LTF8 \square F \square NH- 500K- $\square \square-X 10$	500	6	2

Model	Stroke	$\mathbf{n}_{\mathbf{1}}$	\mathbf{n}_{2}
LTF8 \square F \square NH- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square NH- 700K- $\square \square$-X10	700	8	2
LTF8 \square F \square NH- 800K- $\square \square$-X10	800	9	2
LTF8 \square F \square NH- 900K- $\square \square$-X10	900	10	2
LTF8 \square F \square NH-1000K- $\square \square$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)		1	10	100	500	1000	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	250	0.6	0.7	1.0	2.6	4.6	
	500	0.6	0.7	0.9	1.7	2.7	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$		MSD021P1E	128
Mitsubishi Electric Corporation		MSM022P1B	MSD023P1E		
Yasukawa Electric Corporation	200	$100 / 115$	HC-PQ23B	MR-C20A1	121
		$100 / 115$		SGDE-C20A	
	$200 / 230$	SGME-02AF12B	SGDE-02AP	136	

[^40]Rolled Ball Screw
200.
$\varnothing 15 \mathrm{~mm} / 20 \mathrm{~mm}$ lead

How to Order

	Standard stroke	mm	100	200	300	400	500	600	700	800	900	1000
Performance	Body weight (without motor)	kg	3.4	4.3	5.1	6.0	6.8	7.7	8.5	9.4	10.2	11.1
	Operating temperature range	${ }^{\circ} \mathrm{C}$	5 to 40 (with no condensation)									
	Work load	kg	5									
	Rated thrust	N	180									
	Maximum speed	mm/s	1000						890	710	580	480
	Positioning repeatability	mm	± 0.05									
Main parts	Motor		AC servomotor (200W) with brake									
	Encoder		Incremental system									
	Lead screw		Rolled ball screw $\varnothing 15 \mathrm{~mm}$, 20 mm lead									
	Guide		Frame-type linear guide									
	Motor/Screw connection		With coupling									
Switch	Model		Photo micro sensor EE-SX674 (Refer to page 93 for details.)									
			Proximity switch GXL-N12FT (A contact) (Refer to page 92 for details.)									
			Proximity switch GXL-N12FTB (B contact) (Refer to page 92 for details.)									
Regenerative absorption unit			Refer to the selection guide below.									

Allowable Moment (N.m)

Allowable dynamic moment

[^41]Refer to page $\mathbf{7 1}$ for deflection data.

Regenerative Absorption Unit Selection Guide

Depending on operating conditions, a regenerative absorption unit or regenerative resistor may be required for a non-standard motor with vertical mount specification. How to determine regenerative energy is shown below.
Regenerative energy = Motor coil energy consumption

> + Driver capacitor energy consumption (A)
> + Regenerative resistor energy consumption (B)
(A) and (B) vary depending on each motor and driver. Use of a regenerative absorption unit or regenerative resistor is recommended under any conditions when a vertical specification is used. Contact SMC for questions regarding selections.

Dimensions/LTF8 $\square \mathrm{F} \square \mathrm{NL}(\mathrm{X10})$

*1. The body and work piece mounting reference planes are to be used as guidelines for equipment mounting. Refer to page 68 for the mounting procedure.
*2. For the motor dimensions, refer to "Non-standard Motor."
*3. For the dimensions of the motor mounting position, refer to the dimensions on page 70 for the guidelines for assembly and designing.

Section AA
(Sensor mounting dimensions)

D section detail (Sensor rail dimensions)

E section detail (Switch rail T-slot dimensions)

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square NL- 100K- $\square \square-\mathbf{X 1 0}$	100	2	1
LTF8 \square F \square NL- 200K- $\square \square-X 10$	200	3	1
LTF8 \square F \square NL- 300K- $\square-$-X10	300	4	1
LTF8 $\square \square$ NL- 400K- $\square-$ X10	400	5	1
LTF8 \square F \square NL- 500K- $\square \square$-X10	500	6	2

Model	Stroke	\mathbf{n}_{1}	\mathbf{n}_{2}
LTF8 \square F \square NL- 600K- $\square \square$-X10	600	7	2
LTF8 \square F \square NL- 700K- $\square \square$-X10	700	8	2
LTF8 \square F \square NL- 800K- $\square \square$-X10	800	9	2
LTF8 \square F \square NL- 900K- $\square \square$-X10	900	10	2
LTF8 \square F \square NL-1000K- $\square \square$-X10	1000	11	2

Positioning Time Guide

		Positioning time (sec.)					
Positioning distance (mm)			1	10	100	500	
Speed (mm/s)	10	0.6	1.6	10.6	50.6	100.6	
	100	0.6	0.7	1.6	5.6	10.6	
	500	0.6	0.7	0.9	1.7	2.7	
	1000	0.6	0.7	0.9	1.4	1.9	

A: Acceleration time
B: Constant velocity time
C: Deceleration time
D: Resting time (0.5 sec .)*
Maximum acceleration: $3000 \mathrm{~mm} / \mathrm{s}^{2}$

* The value is a guide when SMC's series LC1 controller is used and may vary depending on the driver capacity.
* Values will vary slightly depending on the operating conditions.

Non-standard Motors: The following motors will be mounted when a motor mounted type is specified.

	Motor output (W)	Power supply voltage (V AC)	Motor model	Compatible driver model	Motor dimension (mm)
Matsushita Electric Industrial Co., Ltd.	200	$100 / 115$		MSD021P1E	128
Mitsubishi Electric Corporation		MSM022P1B	MSD023P1E	121	
Yasukawa Electric Corporation	200	$100 / 115$	HC-PQ23B		MR-C20A
		$100 / 115$		SGDE-02BP	136
	$200 / 230$	SGME-02AF12B	SGDE-02AP		

[^42]
Series LTF Options

Non-standard Motor Cables

These are cables for connecting non-standard motors and drivers.
Cable lengths other than those shown below should be arranged by the customer.

How to order

Applicable cables
LTF (non-standard motor)

Model	Manufacturer part no.
LJ1-1-G05*1	MFMCA0050AEB (for motor) MFECA0050EAB (for encoder)
LJ1-1-G05B	MFMCA0050AEB (for motor) MFECA0050EAB (for encoder) MFMCB0050CET (for brake)
LJ1-1-R05	(for motor)*2 MR-JCCBL5M-L (for encoder)
LJ1-1-Y05*3	DP9320081-2 (for motor) DP9320089-2 (for encoder)
LJ1-1-Y05B	DP9320083-2 (for motor/brake) DP9320089-2 (for encoder)

*1 When the Matsushita Electric Industrial Co., Ltd. motor driver is selected, in addition to the cable, a power connector (MOLEX 5569 - 10R) and an interface connector (Sumitomo/3-M Limited 10126-3000VE) are also required.
*2 No cable is provided for the Mitsubishi Electric Corporation motor and brake. An electric cable with a sectional area of $0.75 \mathrm{~mm}^{2}(600 \mathrm{~V}$ vinyl cable) must be procured by the customer.
*3 When the Yasukawa Electric Corporation motor driver is selected, a digital operator and PC are required for selecting the various parameters.

Please refer to the technical literature of each manufacturer for further details.

Non-standard Motor Driver

Regenerative Absorption Unit/Regenerative Resistor
This is a regenerative absorption unit and regenerative resistor for a nonstandard motor. Make a selection providing an allowance beyond the calculated capacity.

How to order

\mathbf{G}	Matsushita Electric Industrial Co., Ltd.
\mathbf{R}	Mitsubishi Electric Corporation
\mathbf{Y}	Yasukawa Electric Corporation

Applicable types
LTF (non-standard motor)

Model	Manufacturer part no.
LJ1-7-G	DVO P0820
LJ1-7-R	MR-RB013
LJ1-7-Y	JUSP-RG08

LJ1-7-G/Matsushita Electric Industrial Co., Ltd.

LJ1-7-R/Mitsubishi Electric Corporation

LJ1-7-Y/Yasukawa Electric Corporation

Series LTF Construction

Construction

LTF6/LTF8

Parts list

No.	Description	Material	Note
$\mathbf{1}$	AC servomotor	-	$100 \mathrm{~W} / 200 \mathrm{~W}$
$\mathbf{2}$	Lead screw	-	Ball screw
3	Frame-type linear guide	-	
$\mathbf{4}$	Coupling	-	
$\mathbf{5}$	Bearing R	-	
6	Bearing F	-	
7	Housing A	Aluminum alloy	
8	Housing B	Aluminum alloy	
$\mathbf{9}$	Bearing retainer	Carbon steel	

No.	Description	Material	Note
10	Spacer	Stainless steel	
11	Bumper bolt	Alloy steel	
12	Bumper	Resin	
13	Housing plate	Mild steel	
14	Cable clip	Resin	
15	Photo micro sensor rail	Aluminum alloy	
16	Dog fitting for switch	Mild steel	Chromate
17	Photo micro sensor		
18	Connector cable for sensor		

Series LTF Mounting

Top Mount

LTF6

LTF8

Series LTF Non-standard Motor Mounting Dimensions

Non-standard Motor Mounting Dimensions

LTF6

Section AA (Housing interior)

Coupling mounting dimensions*

Series LTF Non-standard Motor Mounting Dimensions

Non-standard Motor Mounting Dimensions

LTF8

Series LTF Deflection Data

Deflection Data

The load and the amount of deflection at load point W are shown in the graphs below for each series.
LTF6

Horizontal

LTF8

Figure 1. Horizontal

Figure 2. Lateral

Dedicated Controller Series LC1

Dedicated Controller for Standard AC Servomotor

Controller

Series LC1

d Mounting bracket

$\mathbf{3}$	M3
$\mathbf{5}$	M5

Actuator classification -
H \quad Series LTF (Incremental encoder)

Applicable actuators		
Symbol	Motor capacity	Compatible actuator models
$\mathbf{2 H}$	100 W	LTF6E $\square \square \square-\square \square \square$
$\mathbf{3 H}$	200 W	LTF8F $\square \square \square-\square \square \square$
$\left.\mathbf{2 V}_{* 2}^{* 1}\right)$	100 W	LTF6E $\square \square \square-\square \square \square \mathrm{K}$
$\mathbf{3 V}$ *2)	200 W	LTF8F $\square \square \square-\square \square \square \mathrm{K}$

Note 2) Be sure to use a regenerative absorption unit (LC7R-K1 $\square \mathrm{A} \square$) with this controller (with brake).

Screw lead 6

\mathbf{F}	6 mm
\mathbf{H}	10 mm
\mathbf{L}	20 mm

Power supply

$\left.\mathbf{1}^{* 1}\right)$	$100 / 110 \mathrm{~V}$ AC $(50 / 60 \mathrm{~Hz})$
$\left.\mathbf{2}^{* 1}\right)$	$200 / 220 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$

*1) Consult SMC if the supply voltage for LC1-1H $\square \mathrm{V} \square 1$ will be 110 V AC or more, or the supply voltage for LC1-1H $\square \mathrm{V} \square 2$ will be 220V AC or more.
d Mounting*

* This controller includes the accessories listed below

LC1-1- $\square \square$ (Either T-nuts or T-brackets for mounting)
LC1-1-1000 (Controller connector)
LC1-1-2000 (Controller connector)
(Refer to page 85.)

Note) The following options are necessary for operating and setting the controller.
\(\left.$$
\begin{array}{l}{\left[\begin{array}{l}\text { LC1-1-S1 PC-98 (MS-DOS) } \\
\text { LCC1-W1 (Windows 95 Japanese) } \\
\text { LCC1-1-W2 (Windows } 95 \text { English) }\end{array}
$$\right)}

and

LC1-1-R \square \square (dedicated communication cable)\end{array}\right]\) (Refer to pages 80, 81, and 85.) \quad| or |
| :--- |
| LC1-1-T1- $\square \square$ (Teaching box) are required. |
| For ordering information, refer to the option part numbers |
| on page 82 . |

controller Series LC1

Performance/Specifications

Item Model	LC1-1H $\square \square \square 1$	LC1-1H $\square \square \square 2$
Power supply	$100 / 110 \mathrm{~V} \mathrm{AC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ (100V AC, $50 / 60 \mathrm{~Hz}$ for LC1-1H $\square \mathrm{V} \square 1$)	$200 / 220 \mathrm{~V}$ AC $\pm 10 \%, 50 / 60 \mathrm{~Hz}$ (200 V AC $\pm 10 \%$ for LC1-1H3 $\square 2$) (200V AC, $50 / 60 \mathrm{~Hz}$ for LC1-1H $\square \mathrm{V} \square 2$)
Leakage current	5 mA or less	
Dimensions	$80 \times 120 \times 244 \mathrm{~mm}$	
Weight	2.2 kg	

Actuator control

Model Item	LC1-1H2H $\square \square$	LC1-1H3H $\square \square$	LC1-1H2V $\square \square$	LC1-1H3V $\square \square$
Compatible actuator model	LTF6E $\square \square \square-\square \square \square$	LTF8FППロ-■ $\square \square$	LTF6E $\square \square \square$ - $\square \square \square K$	LTF6E $\square \square \square-\square \square \square K$
Motor capacity	100W	200W	100W	200W
Operating temperature range	5 to $50^{\circ} \mathrm{C}$	5 to $40^{\circ} \mathrm{C}$	5 to $50^{\circ} \mathrm{C}$	5 to $40^{\circ} \mathrm{C}$
Electric power	300 VA	640VA	300 VA	640VA
Control system	AC software servo/PTP control			
Position detection system	Incremental encoder			
Home position return direction	Can be selected between the motor side and the side opposite the motor.			
Maximum positioning point setting	1008 points (when step designation is actuated)			
Movement command	Absolute and incremental used in combination			
Position designation range	0.00 mm to 4000.00 mm Note)			
Speed designation range	$1 \mathrm{~mm} / \mathrm{s}$ to $2500 \mathrm{~mm} / \mathrm{s}^{\text {Note) }}$			
Acceleration/deceleration designation range	Trapezoidal acceleration/deceleration $1 \mathrm{~mm} / \mathrm{s}^{2}$ to $9800 \mathrm{~mm} / \mathrm{s}^{2}$ Note)			

Note) There are cases in which the position, speed and acceleration designations are not realized, depending on the actuator that is connected and the operating conditions.
Programming

Item	Performance/Specifications
Means of programming	Dedicated controller setup software (LC1-1-S1, LC1-1-W1, LC1-1-W2) and dedicated teaching box (LC1-1-T1- $\square \square)$
Functions	Programming (JOG teaching, direct teaching*), Operation, Monitor, Test, Alarm reset
Number of programs	8 programs
Number of steps	1016 steps (127 steps $\times 8$ programs)

* Direct teaching is only available with LC1-1-W1 and LC1-1-W2.

Operating configuration

Item	Performance/Specifications
Operating methods	Operation by PLC, operating panel, etc., via control terminal; Operation by PC (controller setup software); Operation by teaching box
Summary of operations	Program batch execution (program designated operation), Step designated execution (position movement, point designated operation)
Test run functions	Program test, Step no. designated operation, JOG operation, Input/output operation
Monitor functions	Executed program indication, Input/output monitor

Peripheral device control

Item	Performance/Specifications
General purpose input	6 inputs, Photo-coupler insulation, 24V DC, 5mA
General purpose output	6 outputs, Open collector output, 35V DC max., 80mA/output (maximum load current)
Control commands	Output ON/OFF, Input condition wait, Condition jump, Time limit input wait

Safety items

Item	Performance/Specifications
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply,

Series LC1

Dimensions

LC1-1H $\square \mathrm{H} \square \square$

With regenerative
absorption unit
LC1-1H $\square \mathrm{V} \square \square$

Controller Mounting

Mounting of the controller is performed by means of the two T-grooves provided on the bottom surface.
Mounting is possible from above or below using the special T-nuts or T-brackets. Refer to page 199 for further details.
Note) This controller comes with either the T-nuts or T-brackets as accessories.

Controller model	Mounting screw	Mounting bracket assembly
LC1-1H $\square \square \square \square$-N3	M3 x 0.5	LC1-1-N3
LC1-1H $\square \square \square \square-$ N5	M5 $\times 0.8$	LC1-1-N5
LC1-1H $\square \square \square \square-$ L3	M3	LC1-1-L3
LC1-1H $\square \square \square \square-$ L5	M5	LC1-1-L5

Mounting with T-nuts

Mounting with T-brackets

Part Descriptions

Controller Command Setting List
Actuator control commands

Classification	Function	Instruction	Parameter value
Movement	Absolute movement command	MOVA	Address (speed)
	Incremental movement command	MOVI	\pm Movement (speed)
	Acceleration setting command	ASET	Acceleration

I/O control commands

Classification	Function	Instruction	Parameter value
Output control	Output ON command	O-SET	General purpose output no.
	Output OFF command	O-RES	General purpose output no.
	Output reversal command	O-NOT	General purpose output no.
Input wait	AND input wait command	I-AND	General purpose input no., State
	OR input wait command	I-OR	General purpose input no., State
Input wait with time out function	AND input time out jump command	T-AND	General purpose input no., State (P-no.) label
	OR input time out jump command	T-OR	General purpose input no., State (P-no.) label
	AND input time out subroutine call command	C-AND	General purpose input no., State (P-no.) label
	OR input time out subroutine call command	C-OR	General purpose input no., State (P-no.) label
Condition jump	AND input condition jump command	J-AND	General purpose input no., State (P-no.) label
	OR input condition jump command	J-OR	General purpose input no., State (P-no.) label

Program control commands

Classification	Function	Instruction	Parameter value
Jump	Unconditional jump command	JMP	(P-no.) label
Sub-routine	Subroutine call command	CALL	(P-no.) label
	Subroutine end declaration	RET	
Loop	Loop start command	FOR	Loop frequency
	Loop end command	NEXT	
End	Program end declaration	END	
Timer	Timer command	TIM	Timer amount

Series LC1

Connection Examples

Control Input/Output Terminal: CN1

Terminal to perform actuator operation (connects PLC and operating panel)

CN1. Control input terminal list

Terminal	Pin no.	Description	Function
+24V	1,14	Common	The positive common of the input terminal.
SET-UP	2	Starting preparation	The terminal that performs setup operations (actuator starting preparation).
RUN	15	Starting	The terminal that performs program start.
Pro-no. bit1	17	Program designation	The terminal that designates the program to be executed. Can designate 8 types of programs with a total of 3 bits. (Set by the binary system.)
Pro-no. bit2	5		
Pro-no. bit3	18		
Stp-no. bit1	6	Step designation	The terminal that designates the step to be executed. Used when executing steps (position movement). (Set by the binary system.)
Stp-no. bit2	19		
Stp-no. bit3	7		
Stp-no. bit4	20		
Stp-no. bit5	8		
Stp-no. bit6	21		
Stp-no. bit7	9		
HOLD	3	Temporary stop	Temporarily stops the program run by means of the ON input.
STOP	16	Emergency stop (nonlogical input)	Performs an emergency stop when ON input stops.
ALARM RESET	4	Alarm release	Releases the alarm being generated by means of the ON input.

CN1. Control output terminal list

Terminal	Pin no.	Description	Function
READY	23	System ready signal	Indicates ability to perform control terminal input and communication via the dedicated communication cable when ON.
SET-ON	10	Start readiness signal	Indicates that the SET-UP operation (start ready operation: return to home position after servo ON) is complete when ON. The state in which the program can be run.
BUSY	11	Operating signal	Indicates operation in progress when ON. ON when program is being executed and when returning to the home position.
$\overline{\text { ALARM }}$	24	Alarm output	When this signal is OFF, an alarm is being generated for the actuator/controller.
COM	12,25	Common	The output terminal common.

Control input/output terminal: CN1

General purpose input/output terminal: CN2

Timing for READY signal generation
immediately after turning on power

Timing for home position return

Timing for program/step execution

Timing for alarm reset

Timing for temporary stop during operation

Timing for stop by ALARM-RESET during operation

Timing for emergency stop during operation

Response time with respect to controller input signals

The following factors exist for delay of response with respect to controller input signals.

1) Scanning delay of the controller input signal
2) Delay by the input signal analysis computation
3) Delay of command analysis processing

Factors (1) and (2) above apply to delay with respect to the SET-ON, ALARM-RESET and STOP signals.
Factors (1), (2) and (3) above apply to delay with respect to cancellation of the RUN and HOLD signals.

When signals are applied to the controller by means of a PLC, the PLC processing delay and the controller input signal scan delay should be considered, and the signal state should be maintained for 50 ms or longer.

It is recommended that the input signal state be initialized with the response signal to the input signal as a condition.

Series LC1 Controller Setup Software LC1-1-w2

Windows/LC1-1-W2 (English)

Windows edition controller setup software includes all of the functions of PC-98 (MS-DOS) edition software, and the following functions have also been added.

- Direct teaching
- Program printing
- Batch editing and sending/receiving of all programs
- Batch management and multiple saving of parameters and programs

Operating environment

Computer	A model with a Pentium 75MHz or faster CPU, and able to fully operate Windows 95.
OS	Windows 95
Memory	16 MB or more
Hard disk	5 MB or more of disk space required

- The dedicated communications cable (LC1-1-R $\square \square \square$) is required when using this software. - This software cannot be used with Windows 3.1.

Controller Setup Software Series LC1

Windows/LC1-1-W2 (English)

Screen example

- The contents of this software and the registered product specifications may change without prior notice.
- Duplicating, copying or reproducing of this software, in whole or in part, is prohibited without prior consent from SMC.
- SMC owns the copyright of this software.
- The intellectual property rights and other rights concerning this software are solely owned by SMC. This also applies to any future version upgrades and revised versions of this software.
- SMC does not assume any compensatory responsibility for any damage or loss of profit, etc., resulting from the use of this software.
- Windows and Microsoft are registered trade marks of Microsoft Corporation.
- MS-DOS is a registered trade mark of Microsoft Corporation.
- Pentium is a trade mark of Intel Corporation.
- PC-98 Series is a registered trade mark of NEC Corporation.

Series LC1
 Dedicated Teaching Box/LC1-1-T1

- Interactive input display
- Programming with the same language as PC software

Able to execute operations such as programming and parameter changes, which up until now have been performed from a PC.

* The special cable is packed with the teaching box. (2 to 5 m)

How to Order
LC1-1-T1-0 2

Cable length
2
3
4
$\mathbf{5}$

Performance/Specifications

General specifications

	LC1-1-T1-0
Power supply	Supplied from LC1
Dimensions (mm)	$170 \times 76 \times 20$
Weight (g)	158
Case type	Resin case
Display unit	$46 \times 55 \mathrm{~mm}$ LCD
Operating unit	Key switches, LED indicators
Cable length	$2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$

Basic performance

	Performance/Specifications
Compatible controller	LC1 (all models)
Operating temperature range	5 to $50^{\circ} \mathrm{C}$
Functions	Programming, Parameter change, Setup, Operation, JOG operation, Monitor, Alarm reset, JOG teaching
Monitor functions	Movement position, Movement speed
Protection functions	Over current, Over load, Over speed, Encoder error, Abnormal driver temperature, Abnormal drive power supply, Communication error, Battery error, Limit out, Abnormal driver parameter, RAM malfunction
Protection function indicator	Alarm code

Dedicated Teaching Box Series LC1

Dimensions

Alarm Code List

Alarm code	Alarm	Reset	Description
10	Emergency stop	\bigcirc	An emergency stop condition exists or has occurred in the past due to the controller setup software or the CN1 control STOP terminal.
11	Limit switch ON	\bigcirc	Limit switch is turned ON.
12	Battery error	\bullet	The memory backup battery voltage is low. Contact SMC.
13	Communication error	\bigcirc	Communication with the controller is interrupted.
14	RAM malfunction	\bullet	The parameter is damaged.
15	Soft stroke limit	\bigcirc	The program is about to exceed the stroke length set by the parameter.
20	Over current	-	Three times the rated current or more is flowing into the driver unit.
21	Over load	\bullet	The driver unit continuously received a current exceeding the rated current for a prescribed time or longer.
22	Over speed	-	The controller exceeded the maximum operational speed.
24	Abnormal driver temperature	\bullet	A temperature increase of the driver unit activated the temperature sensor.
25	Encoder error	\bullet	An encoder or actuator cable malfunction has occurred.
26	Abnormal drive current	-	The driver unit power supply is shut off due to a regeneration problem, etc.
28	Abnormal driver parameter	\bullet	A driver parameter abnormality in the controller system has occurred.
30	Unsuccessful home position return	\bigcirc	Trying to execute a program/step without completing the setup (home position return).
31	No designated speed	\bigcirc	No speed designation with MOVA or MOVI, and no prior speed designation found.
32	No jump destination	\bigcirc	No label found at the program designated jump destination.
33	Nesting exceeded	\bigcirc	Sub-routine nesting (calling a sub-routine from another sub-routine) exceeds 14 levels.
34	No return destination	\bigcirc	No return destination found for the RET command operation.
35	Executing FOR	\bigcirc	A forbidden command is found between FOR and NEXT.
36	No FOR	\bigcirc	NEXT command was executed without executing FOR command.
37	No operation program	\bigcirc	Trying to execute a program/step with no commands.
38	Invalid movement command	\bigcirc	Trying to execute a command other than MOVA, MOVI, or ASET with a step (position movement) designated operation.
39	Format error	\bigcirc	An error is found in the attached value of a command being programmed.

* Refer to the Series LC1 instruction manual for alarm details.
* Explanation of "Reset" symbols above:

O: Can be reset by the alarm reset.

- Turning OFF the controller power is required for resetting.

Series LC1

Key Arrangement and Functions

For the operation of each mode, refer to the product's instruction manual.

Key	Functions
UP	Moves upward for item selections. Also used to increase values for data entry. In combination with L/R keys, this key drives the actuator at high speed during a JOG operation.
DOWN	Moves downward for item selections. Also used to decrease values for data entry. L It drives the actuator to the end side during a JOG operation.
R	Moves to the right for item selections. Also used to move a numerical value place to the right for data entry. It drives the actuator to the motor side during a JOG operation.
HOLD/BS	Returns to the previous mode during item selections. It becomes the temporary stop key during actuator operation.
MODE/ESC	Returns to the main mode during item selections. It exits all modes.
STOP	Becomes the emergency stop key during actuator operation. In combination with the ENT key, it launches JOG teaching and aids program editing.
ENT	Determines data during item selections. In combination with the STOP key, it launches JOG teaching and aids program editing.

Series LC1 Options

T-nuts and T-brackets for Mounting

Be sure to use when mounting the controller.
Note) The controller unit includes either T-nuts or T-brackets.

T-nuts

T-brackets

Controller Connectors

These are connectors 'all halfpitch type' used for CN1 (control input/output) and CN2 (general purpose input/output).
Note) The controller unit includes a controller connector for use with CN1 and CN2.

CN1 (Control input/output)

Single side wired controller connector (CN1: Control input/output) Model LC1-1-1050

Cable is connected to LC1-1-1000.

CN2 (General purpose input/output)

Controller connector (CN2: General purpose input/output) Model LC1-1-2000

10320-52A0-008 Halfpitch hood (20P) Sumitomo/3M Limited 10120-3000VE Halfpitch plug (20P) Sumitomo/3M Limited
Single side wired controller connector (CN2: General purpose input/output) Model LC1-1-2050

Cable is connected to LC1-1-2000.

Dedicated Communication Cables

These are cables used to connect controllers and PCs.
Note) Be aware of the configuration of the connector on the PC when selecting a dedicated communication cable..

Controller/LC1

Dedicated communication cable (D-sub) (For NEC PC-98 Series)
Model LC1-1-R $\square \mathbf{D}$

- Cable length

02-2m 04-4m 03-3m 05-5m

Dedicated communication cable (halfpitch) (For NEC PC-98 Series)

Dedicated communication cable (IBM PC/AT compatible computer)

Series LC7R
 Dedicated Regenerative Absorption Unit

The regenerative absorption unit absorbs the energy (regenerative energy) that is generated by the motor when it decelerates. It is used to prevent drive power abnormality in the controller.

\triangle Danger

1. Contact SMC if the connected controller power supply voltage will be 110V AC or 220 V AC, as this may cause fire or malfunction.
2. Secure a distance of 50 mm or more between the body and control panel interior or other equipment, as this may cause fire or malfunction.
3. Confirm that there are no problems with terminal polarity, pin numbers, and crimping before connecting, as they may cause damage, malfunction, injuries, or fire.
4. Set up a circuit that shuts off the connected controller main power supply if trouble occurs in the regenerative absorption unit.
5. The regenerative absorption unit (LC7R) is exclusively for use with series LC1 controller connection. Therefore, never connect it to other equipment as this may cause fire or malfunction.

How to Order

Regenerative Absorption Unit

Note 1) Consult SMC if the connected controller power supply voltage will be 110 V AC or 220 V AC. Note 2) The temperature control output cable length is 1 m . Also, the connector cable already has the required contact pin and connector assembled.

Single Option

Note) The temperature control output cable length is 1 m . Also, the connector cable already has the required contact pin and connector assembled.

Specifications

Model	LC7R-K11A $\square \square$	LC7R-K12A $\square \square$
Regeneration method	Heat exchange method based on resistance	
Regenerative resistance capacity	40W	
Regenerative operation voltage	180V	380 V
Protective circuit	Regenerative voltage input mis-wiring protection Over current protection, Overheating protection (Normally closed, Radiator sensor OFF at $100^{\circ} \mathrm{C}$)	
Ambient operating temperature	0 to $40^{\circ} \mathrm{C}$	
Connected controller power voltage	100 V AC	200V AC
External connection method	Connector	
Insulation resistance	500 V DC, $50 \mathrm{M} \Omega$ or more	
Mounting	DIN rail mount	

Connection Examples

- Electrical wire

———Cover O.D.: Max. 3.1 mm (AWG18 to 20) [0.5m or less]
$=-\quad$ Cover O.D.: Max. 3.1mm (AWG18 to 24) [1m or less]

- Temperature control output terminal

Maximum rated voltage: 30 V
Maximum rated current: 6 mA

Note) Select 6 mA or less for resistor R after confirming the input capacity of the control equipment.

- Regenerative absorption unit connectors [Manufacturer: Molex Japan Co., Ltd.]

Description	Part no.	Quantity
Receptacle	5557-06R	1
Female terminal	5556PBTL	6

- Wiring tools [Manufacturer: Molex Japan Co., Ltd.]

Wiring tools should be provided by customer.

Description	Part no.
Crimping tool	$57026-5000$ (for UL1007)
	$57027-5000$ (for UL1015)
Puller	$57031-6000$

- Contact pin number

Terminal	Pin no.	Description	
Vin (P)	2	Regenerative absorption unit power input (positive)	1 2 3
Vin (N)	3	Regenerative absorption unit power input (negative)	4 5 6
Vout (P)	1	Extended regenerative resistance output (positive)	
Vout (N)	4	Extended regenerative resistance output (negative)	
ALM (P)	5	Temperature control output terminal (positive)	
ALM (N)	6	Temperature control output terminal (negative)	

Series LC7R

Brake Wiring Example

A wiring example for controller (Series LC1) connectors and a brake is shown below. The brake is in a de-energized condition and locked. $24 V D C$ is required to unlock it. The brake terminal is located in the motor power line connector (CN5), and it is connected to the relay switch inside the controller. By connecting the wiring to this terminal, turning on and off of the brake is controlled by the controller. (The brake does not have polarity.)

When the AC power supply (100 V AC or single phase 200 V AC) is shut off, use a relay to shut off 24 V DC.

\triangle Danger

1. When not connecting a regenerative absorption unit, use a blanking plate to cover CN6, as there is a danger of electrocution or injury.
2. The manual brake unlocking switch unlocks the brake during maintenance or an emergency. Mount the switch when it is necessary for maintenance, etc. Be sure to turn the switch off for purposes other than maintenance, etc. The brake will not operate with the switch on at emergency.
3. If the manual brake unlocking switch is not mounted, the brake cannot be unlocked for an emergency.

\triangle Caution

1. A regenerative absorption unit is required depending on actuator operating conditions. Read the instruction manual for the regenerative absorption unit when one is connected.

Non-Standard Motor Compatible Drivers

Matsushita Electric Industrial Co., Ltd. Drivers for LTF (For the hodding brake wining, referto teechical intomation rovovided by each manuuacuruer))

Dimensions

Driver

Driver dimensions

Driver model	A
MSD013P1E	35
MSD011P1E	45
MSD023P1E	
MSD021P1E	60

Driver input/output signal list (CN-1/F connector)

Pin no.	Symbol	Signal description	Pin no.	Symbol	Signal description
1	COM +	Control signal power supply	12	IM	Torque monitor signal
2	SRV-ON	Servo ON input	13	COM-	Control signal power supply
3	A-CLR	Alarm clear input	14	GND	
4	CL	Counter clear input	19	$\mathrm{OZ}+$	Z phase output
5	GAIN	Gain switching input	20	OZ-	Z phase output
6	DIV	Command divider switching input	21	CZ	Z phase output
7	CWL	CW drive suppression input	22	CW+	CW pulse input
8	CCWL	CCW drive suppression input	23	CW-	CW pulse input
9	ALM	Servo alarm output	24	CCW+	CCW pulse input
10	COIN	Positioning complete signal output	25	CCW-	CCW pulse input
11	SP	Speed monitor signal	26	FG	Frame ground

Non-standard Motor Compatible Drivers

Mitsubishi Electric Corporation Drivers for LTF (For the holding brake wing, refer to tecchical information provided by each manufacturer.
Dimensions (RS-232C without optional unit)
Driver

Driver dimensions

Driver model
MR-C10A
MR-C20A
MR-C10A1
MR-C20A1

Driver input/output signal list (CN-1/F connector)

Pin no.	Symbol	Signal description	Pin no.	Symbol	Signal description
1	V+	Digital output power supply	11	SD	Shield
2	ALM	Failure	12	SG	Interface power supply common
3	PF	Positioning complete	13	CR	Clear
4	OP	Z phase pulse	14	LSN	Reverse stroke end
5	SG	Interface power supply common	15	LSP	Normal stroke end
7	NP	Reverse pulse line	16	V5	Interface power supply
8	NG	Reverse pulse line	17	SON	Servo ON
9	PP	Normal pulse line	19	OPC	Open collector power supply
10	PG	Normal pulse line	20	V24	Interface power supply

Example for driver connection between equipment

Note 1) Do not orient diodes incorrectly. The amp will fail if connected incorrectly.
Note 2) Wiring for a standard cable less than 10 m . When the cable length is 10 m or longer, four lines each of P5 and LG wires should be connected in parallel. (Maximum 50m)
Note 3) Signals having the same description should be connected to the same pin on the connector.
Note 4) The failure (ALM) signal is ON under normal conditions when there is no alarm. When it goes OFF (when an alarm is generated), the controller output should be stopped by the sequence program.
Note 5) The LSP and LSN signals do not require wiring, because they are automatically turned on internally at the time of shipment. (They can also be validated by parameters.)

Note 6) A sequence should be implemented to turn on the RDY relay after confirming that there is no trouble with the servo (ALM signal is ON)
Note 7) For motor with electromagnetic brake.

Dimensions

Driver

Driver dimensions

Driver model	A	B
SGDE-01AP		
SGDE-01BP	50	55
SGDE-02AP		
SGDE-02BP	65	75

Driver input/output signal list (CN-1/F connector)

Pin no.	Signal	Signal description	Pin no.	Signal	Signal description
1	PULS	Command pulse input	14	S-ON	Servo ON input
2	*PULS	Command pulse input	15	$\overline{\mathrm{P}-\mathrm{ON}}$	P actuation input
3	SIGN	Command code input	16	P-OT	Normal rotation suppression input
4	*SIGN	Command code input	17	N-OT	Reverse rotation suppression input
5	CLR	Deviation counter clear input	18	$\overline{\text { ALMRST }}$	Alarm reset input
6	*CLR	Deviation counter clear input	32	PCO	PG output C phase
7	$\overline{\mathrm{BK}}$	Brake interlock signal output	33	SG	OV
8	$\overline{\text { COIN }}$	Positioning complete signal output	34	ALM	Servo alarm output
10	SG	OV	35	SG	OV
13	P-IN	External power supply input	36	FG	Frame ground

Example for driver connection between equipment

1Ry ON for servo ON
2Ry ON for proportional control
N-LS open for reverse drive suppression
P-LS open for normal drive suppression 3Ry ON for alarm release

Note) 1 The capacity of each output circuit is 30 V DC, 50 mA or less.
2 The signal input line IP indicates a twisted pair wire.
3 The 24 V power supply should be arranged by the customer.

Switches
 Proximity Switches

Applicable switch models

Applicable model	Part no.	Switch type		
LTF	GXL-N12FT	Standard	N.O. (A contact)	3 wire
	GXL-N12FTB	Standard	N.C. (B contact)	3 wire

Switch specifications (SUNX Corporation)

Part no.		GXL-N12FT(B)
Repeatability		Direction of detecting axis, Perpendicular to detecting axis: 0.04 mm or less
Power supply voltage		12 to 24 V DC $\pm 10 \%$, Ripple P-P 10% or less
Current consumption		15 mA
Output		NPN Maximum load current: 100 mA Maximum applied voltage: 30 V DC Residual voltage: 1 V or less (At 100 mA inrush current) 0.4 V or less (At 16 mA inrush current)
Maximum response frequency		500 Hz
Indicator light		Red LED (lights up when ON)
Environmental resistance	Ambient temperature	-10° to $55^{\circ} \mathrm{C}$
	Ambient humidity	45 to 85\% RH
	Noise resistance	Power line: 240 Vp , pulse width of $0.5 \mu \mathrm{~s}$
Detecting distance fluctuation	$\begin{aligned} & \text { Temperature } \\ & \text { characteristics } \\ & \hline \end{aligned}$	Within $+15 /-10 \%$ of detecting distance at $20^{\circ} \mathrm{C}$ within ambient temperature range
	Voltage characteristics	Within $\pm 2 \%$ with $\pm 10 \%$ fluctuation of operating voltage
Cable		$\mathrm{CN}-13-\mathrm{C} 3$ ($\square 3.8 \mathrm{~mm} 3$ wire heavy duty cable 3m)

Proximity switch internal circuit

Be sure to use the mounting screws included, and mount the proximity switch as shown in the drawing to the right. Mount the dog fitting for proximity switch as illustrated to the right.
Always use the proper tightening torque and use a thread locking agent on screws to prevent loosening.

Proximity Switch/Dog Fitting for Proximity Switch Mounting

Switches

 Photo Micro Sensor
Standard Photo Micro Sensor for Home Position (OMRON Corporation)

Rating

Power supply voltage	5 to 24 V DC $\pm 10 \%$, Ripple (p-p) 10% or less
Current consumption	35 mA or less
Control output	5 to 24 VDC load current (Ic) 100 mA , Residual voltage 0.8 V or less Load current (Ic) 40 mA, Residual voltage 0.4 V or less
Ambient temperature	Operation: -25 to $55^{\circ} \mathrm{C}$ (When stored: -30 to $80^{\circ} \mathrm{C}$)
Ambient humidity	Operation: 5 to 85% RH (When stored: 5 to $95 \% R \mathrm{~F})$
Part no.	EE-SX674
Part no. of connector with code	EE-1010
Applicable actuator	LTF

* Normally ON when light is blocked. However, if the (L)terminal and + terminal are shorted, it changes to ON when light enters.

Output level circuit

Operating condition of output transistor	ON when light enters	ON when light is blocked
Output circuit	 * Normally ON when light is bloc terminal are shorted, it change	d. However, if the (L) terminal and \oplus ON when light enters.
Time chart		

[^43]Mount the photo micro sensor as illustrated to the right.
Mount the dog fitting for photo micro sensor as illustrated to the right.
Be sure to observe the prescribed tightening torque. Use special adhesive for screws for locking.

Photo Micro Sensor/ Dog Fitting for Photo Micro Sensor Mounting

Phillips countersunk machine screw (Class 1)(M2.6 $\times 5$) Tightening torque: $0.16 \pm 0.01 \mathrm{~N} \cdot \mathrm{~m}$

Inquiry Sheet

Fill out the form and contact the nearest SMC sales office or distributor.

Name of customer	Company name Dept.	Contact person	
Contact telephone/ fax no.	Telephone	Fax	
Mounting orientation	Horizontal, Horizontal wall mount, Horizontal reverse mount, Vertical		
Work piece load (kg)			
Stroke (mm)			
Speed (mm/s)			
Positioning repeatability (mm)	$\pm 0.1, \pm 0.05, \pm 0.02$		
Components Circle components provided by customer.	Units required - Actuator + Motor + Driver (controller) (1) Motor/Driver: Yes (Manufacturer: , Part no.: : No - Proceed to (2). (2) Controller/Driver selection: a) Controller provided by customer PLC (Manufacturer: , Part no.: Positioning unit (pulse output function): Yes, No b) Driver specifications Power supply: 24 V DC, 100 V AC, 200 V AC International standard compatibility: None, CE, UL c) Motor type: AC servomotor, Stepper motor (2 phase/5 phase), Brushless motor		
Operation pattern Describe in detail.			
Tact time	 Confirm the amount of time in seconds needed to cover the moving distance. Moving distance: \qquad mm t = Tact time: \qquad s S = Cycle time: \qquad s		
Work piece moment	Example) Projectio		
Environment	General, Clean room, Mist environment, Dusty environment		

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 10218 Note 1), JIS 8433 Note 2) and other safety practices.

Note 2) JIS 8433: General Rules for Robot Safety

© Warning

1. The compatibility of electric actuators is the responsibility of the person who designs the system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific system must be based on specifications or after analysis and/or tests to meet your specific requirements. The expected performance and safety assurance will be the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified, referring to the latest catalog information with a view to giving due consideration to any possibility of equipment failure when configuring a system.
2. Only trained personnel should operate this equipment.

Electric actuators can be dangerous if an operator is unfamiliar with them. Assembly, handling or repair of systems using electric actuators should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.

1. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
2. When equipment is to be removed, confirm the safety process as mentioned above, and shut off the power supply for this equipment.
3. Before machinery/equipment is restarted, confirm that safety measures are in effect.
4. Contact SMC if the product is to be used in any of the following conditions:
5. Conditions and environments beyond the given specifications, or if product is used outdoors.
6. Installation on equipment in conjunction with atomic energy, medical equipment, food and beverages, or safety equipment.
7. An application which has the possibility of having negative effects on people, property or animals, requiring special safety analysis.

Series LTF
Electric Actuator Precautions 1
Be sure to read before handling.

Design

\triangle Warning

1. There is a possibility of dangerous sudden action by actuators if sliding parts of machinery are twisted due to external forces, etc.
In such cases, human injury may occur, e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be adjusted for smooth operation and designed to avoid such dangers.
2. A protective cover is recommended to minimize the risk of human injury.
If a driven object and moving parts of an actuator pose a danger of human injury, design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts of electric actuators so that they will not become loose.
Avoid use in locations where direct vibration or impact shock, etc., will be applied to the body of the actuator.
4. In cases where dangerous conditions may result from power failure or malfunction of the product, install safety equipment to prevent damage to machinery and human injury. Consideration must also be given to drop prevention with regard to suspension equipment and lifting mechanisms.
5. Consider possible loss of power sources.

Take measures to protect against human injury and machine damage in the event that there is a loss of air pressure, electricity or hydraulic power.
6. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions such as a power outage or a manual emergency stop.
7. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation.

Operation

\triangle Caution

1. In order to ensure proper operation, be certain to read the instruction manual carefully. As a rule, handling or usage/operation other than that contained in the instruction manual are prohibited.
2. The actuator can be used with a load directly applied within the allowable range. However, design for an appropriate connecting method and careful alignment are necessary when a load with external support and guide mechanisms is connected.
Please note that the reference plane for actuator body mounting should only be used as a guideline to install the body. Never use it as a reference plane to align the entire equipment with external support and guide mechanisms.
The longer the stroke is, the larger the variation in the axial center becomes. Therefore, devise a connection method to absorb the variation.

Operation

\triangle Caution

3. Since the bearing parts and parts surrounding the lead screw are adjusted at the time of shipment, do not change the setting of the adjusted parts.
4. The product can be used without lubrication. In case the product is to be lubricated, use lithium grease (JIS 2).
5. If the actuator will be used in an environment where it will be exposed to chips, dust, cutting oil (water, liquids), etc., a cover or other protection should be provided.
6. See to it that no repeated bending stress or stretching force is applied to the motor cable.
7. Since no protective cover is installed on the product, provide an external protective cover protecting the entire product wherever possible.
Using the product in an environment where it is exposed to water, liquid coolant or dust such as iron powder will cause an adverse effect to the ball screw and the guide. Therefore, an external cover is also required for dust prevention.
8. Secure the work piece firmly on the top of the table using the four mounting holes.
Never use the actuator with the work piece mounted only on one side of the table.
9. If the electric actuator is repeatedly operated for short stroke cycles (20 mm for LJ, 10 mm for LX), this may cause loss of grease. Therefore, operate the actuator for a full stroke once every scores of cycles.

Selection

\triangle Warning

1. Confirm the specifications.

The products in this catalog should not be used outside the range of specifications, as this may cause damage or malfunction, etc. (Refer to specifications.)

\triangle Caution

1. The operation of the actuator should be confirmed at a low speed. Operate it at the prescribed speed only after proper operation is confirmed.

Series LTF
Electric Actuator Precautions 2
Be sure to read before handling.

Mounting

\triangle Caution

1. Do not use until you verify that the equipment can operate properly.
2. The product should be mounted and operated after thoroughly reading the instruction manual and understanding its contents.
3. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause a loss of parallelism in the mounting surfaces, looseness in the guide unit, an increase in operating resistance or other problems.
4. When attaching a work load, do not apply strong impact shock or a large moment.
If an outside force exceeding the allowable moment is applied, this may cause looseness in the guide unit, an increase in sliding resistance or other problems.
5. When connecting a load having an external support or guide mechanism, be sure to select a suitable connection method and perform careful alignment.
6. Take care that cables are not caught by actuator movement.
7. Do not use in locations where there is vibration or impact shock. Contact SMC before using in this kind of environment, as damage may result.
8. Give adequate consideration to the arrangement of wiring, etc., when mounting. If wiring is forced into inappropriate arrangement, this may lead to breaks in the wiring and result in malfunction.
9. Avoid use in the following environments.
10. Locations with a lot of debris or dust, or where chips may enter.
11. Locations where the ambient temperature exceeds the range of 5 to $40^{\circ} \mathrm{C}$.
12. Locations where the ambient humidity exceeds the range of 10 to 90%.
13. Locations where corrosive or combustible gases are generated.
14. Locations where strong magnetic or electric fields are generated.
15. Locations where direct vibration or impact shock, etc., will be applied to the actuator unit.

Grounding

\triangle Caution

1. Be sure to carry out grounding in order to ensure the noise tolerance of the controller.
2. Dedicated grounding should be used as much as possible. Grounding should be to a type 3 ground. (Ground resistance of 100Ω or less.)
3. Use a wire with a sectional area of $2 \mathrm{~mm}^{2}$ or larger for grounding. Grounding should be as close as possible to the controller, and the ground wires should be as short as possible.
4. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Power Supply

\triangle Caution

1. In cases where voltage fluctuations greatly exceed the prescribed voltage, a constant voltage transformer, etc., should be used to operate within the prescribed range.
2. Use a power supply that has low noise between lines and between power and ground. In cases where noise is high, an isolation transformer should be used.
3. The power supply line to the controller and the interface power supply line to general input/output and control terminals (24V DC) must be wired separately in different systems.
4. To minimize the voltage drop, use $100 / 200 \mathrm{~V} \mathrm{AC}$ and 24 V DC wires with the largest sectional areas possible and keep the wiring length as short as possible.
5. The $100 / 200$ V AC wire must not be bundled with or arranged in close proximity with the input/output lines of control terminals or encoder signal lines. If possible, keep a 100 mm or larger distance from such lines.
6. To prevent surges from lightening, connect a varistor for lightning. Ground the surge absorber for lightning separately from the grounding of the controller.

Operating Environment

\triangle Caution

1. Do not use the actuator in an environment where there is possible danger of corrosion.
2. Install a protective cover on the entire product in an environment where a large amount of dust is present or where the product is exposed to water or oil drops.
3. Do not use the actuator in an environment where a strong magnetic field is present.

Maintenance

\triangle Warning

1. Perform maintenance according to the procedures indicated in the instruction manual.
If handled improperly, malfunction and damage of machinery or equipment may occur.
2. Removal of equipment

When equipment is to be removed, first confirm that measures are in place to prevent dropping or runaway of driven objects, etc., and then proceed after shutting off the electric power. When starting up again, proceed with caution after confirming that conditions are safe.

Photo Micro Sensor and Proximity Switches Precautions

Be sure to read before handling.
Refer to the main pages for precautions on respective series.

Operating Environment

\triangle Warning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside actuators will become demagnetized.
3. Do not use in an environment where the auto switch will be continually exposed to water.
Do not use switches in applications where they will be continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.

Consult SMC if switches are used where there are temperature cycles other than normal air temperature changes, as they may be adversely affected internally.
6. Do not use in an area where surges are generated.

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around actuators with solid state auto switches, this may cause deterioration or damage to the internal circuit elements of the switch. Avoid sources of surge generation and crossed lines.
7. Avoid accumulation of iron waste or close contact with magnetic substances.
When a large amount of ferrous waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch actuator, it may cause auto switches to malfunction due to a loss of the magnetic force inside the actuator.
8. Keep the sensor away from splashes of organic solvents, acids, alkalis aromatic hydrocarbons or chloroaliphatic hydrocarbons. Melting may be caused by such chemicals splashed on the sensor, resulting in possible decline of performance.

Other

\triangle Warning

1. Consult SMC concerning water resistance, flexibility of lead wires, and usage at welding sites, etc.

Incorrect Usage

\triangle Caution

1. Do not operate beyond the rated voltage range.

If applying voltage over the rated voltage range, equipment may be damaged.
2. Avoid incorrect wiring such as polarity of power supply.
Otherwise, equipment may be damaged.
3. Do not short circuit the load. (Do not connect to power supply.)
Otherwise, equipment may be damaged.

Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

Other

\triangle Caution

1. Power lines and high voltage lines should not be in the same piping or duct with wiring of the photo micro sensor, as the system may malfunction or be damaged due to induction. Separate wiring or individual piping is required to avoid such trouble.
2. If operating with a small induction load such as a relay, wire as shown in the figure below. (In this case, be sure to connect a reverse voltage suppression diode.)

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA
SMC Pneumatik GmbH
CZECH
SMC Industrial Automation CZ s.r.o.
DENMARK
SMC Pneumatik A/S
FINLAND
SMC Pneumatiikka Oy
FRANCE
SMC Pneumatique SA
GERMANY
SMC Pneumatik GmbH
HUNGARY
SMC Ipari Automatizáási Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.
LATVIA
SMC Pnuematics Latvia SIA
NETHERLANDS
SMC Pneumatics BV.

NORWAY

SMC Pneumatics Norway A/S

POLAND

SMC Industrial Automation Polska Sp.z.o.o.
ROMANIA
SMC Romania s.r.I.
RUSSIA
SMC Pneumatik LLC.

SLOVAKIA

SMC Priemyselná Automatizáciá, s.r.o.
SLOVENIA
SMC Industrijska Avtomatika d.o.o.
SPAIN/PORTUGAL
SMC España, S.A.
SWEDEN
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG.
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA

SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong kong) Ltd. INDIA
SMC Pneumatics (India) Pvt. Ltd. INDONESIA
PT. SMC Pneumatics Indonesia
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd.
PHILIPPINES
SMC Pneumatics (Philippines), Inc.
SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd.
SOUTH KOREA
SMC Pneumatics Korea Co., Ltd.

TAIWAN
SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd.

NORTH AMERICA

CANADA

SMC Pneumatics (Canada) Ltd.

MEXICO

SMC Corporation (Mexico) S.A. de C.V.
USA
SMC Corporation of America

SOUTH AMERICA

ARGENTINA

SMC Argentina S.A.

BOLIVIA

SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos Do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
VENEZUELA
SMC Neumatica Venezuela S.A.

OCEANIA

AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC Corporation

1-16-4 Shimbashi, Minato-ku, Tokyo 105-8659 JAPAN
Tel: 03-3502-2740 Fax: 03-3508-2480
URL http://www.smcworld.com
© 2002 SMC CORPORATION All Rights Reserved
1st printing \quad November, $2002 \quad \mathrm{D}-\mathrm{DN} \quad \mathrm{P}-80$ (DN)
This catalog is printed on recycled paper with concern for the global environment.

Линейный и линейно-поворотный привод с подвижной катушкой SMAC

Серия LAL,LAR,LAS,GRP

Предназначены для высокопроизводительных или деликатных операций с необходимостью управления законом движения привода.

- Независимое двухкоординатное управление с высокой точностью.
- Задание необходимого закона движения (скорость, ускорение, усилие)
- Точность линейного позиционирования $0.1,0.5,1$ ли 5 мкм
- Точность углового позиционирования -$0.007^{\circ}-0.7^{\circ}$
- Программируемое усилие от 0.3 до 100 H
- Программируемая скорость от 0.005 до 1000 мм/сек
- Программируемое ускорение от 0 до 15G
- Малая масса подвижных частей и высокое быстродействие
- Встроенные прецизионные линейные направляющие
- Сквозное отверстие в штоке для подвода сжатого воздуха или вакуума
- Точные посадочные размеры, удобный монтаж
- Управление стандартными средствами для сервоприводов
- Принцип действия привода основан на физических законах взаимодействия поля постоянного магнита с витками электромагнитной катушки, через которую проходит электрический ток. Подвижный шток привода соединен непосредственно с катушкой. Закон изменения тока определяет закон движения нагрузки, соединенной со штоком привода.

Управление приводом

Hardware with SMAC Amplifier

SMC

Применение

Однокоординатный привод может использоваться во всех традиционных приложениях для линейных приводов, но особенно эффективен при необходимости контроля за усилиями, точного регулирования скорости или положения, высоких скоростях перемещений или часто повторяющихся циклических движениях, таких, как:

- Точная и деликатная транспортировка.
- Проверка усилий и ходов.
- Перфорация.
- Юстировка и балансировка подвижных прецизионных механизмов.

Двухкоординатный привод предназначен для того, чтобы поднимать, переворачивать и устанавливать элементы, например, в таких процессах:

- установка полупроводниковых компонентов.
- сборка монтажных плат
- прецизионная сборка с одновременным контролем линейных и угловых размеров и усилий.
- Точная и деликатная транспортировка

Использование 2-х координатного привода SMAC LAR-50 на операции транспортировки кремниевой подложки:

- Подъем и поворот пластины на 180°
- Точный контроль усилия с точностью 10 гр
- Контроль скорости и ускорения руки робота

Операция монтажа ИС:

Линейный электрический привод с направляющей качения (E-MY2C) и с прецизионной направляющей (E-MY2H)

- Программирование не требуется (управление аналогично пневматическому цилиндру)
- Позиционирование в промежуточных положениях
- Исполнения со встроенным и выносным контроллером
- Возможность ручного управления
- Простота обслуживания
- Различные варианты размещения двигателя
- Точность позиционирования 0,01 мм (в крайних положениях), 0,1 мм (в промежуточных положениях)
- Легко настраиваемые скорость и ускорение
- Максимальная скорость - 1000 мм/с, максимальное ускорение $-4,9$ м/с ${ }^{2}$

Технические характеристики

Номер для заказа

Стандартные длины хода (мм)

Типо- размер	Стандартные длины хода (мм) *	Макс. длина хода (мм)
16,25	$100,200,300,400,500,600,700,800,900,1000$	1000

[^44]

Размеры

E-MY2C Типоразмер Ход
Типоразмер : 16

Типоразмер: 25

Размеры

Типоразмер : $\mathbf{2 5}$

Размеры

E-MY2C Типоразмер Ход
Типоразмер : 16

Типоразмер: 25

Размеры

Типоразмер : $\mathbf{2 5}$

Электрический привод

LZB/LZC

Может применяться в случаях, когда нет источника сжатого воздуха, или в отраслях промышленности, в которых пневмооборудование используется частично, таких как полупроводниковая или медицинская техника.

- Управление аналогично пневматическому цилиндру
- Защита блока управления и мотора от перегрузки
- Возможна регулировка момента с блока управления
- Низкий уровень шума (LZC3*~41Дб)

Технические характеристики

Модель		L\Z ${ }^{\text {L }}$ L	LपZП3M	L\Z ${ }^{\text {l }}$ H		L\Zप5M	L\Z ${ }^{\text {5H }}$
Типоразмер		3 (соответствует цилиндру Ø16)			5 (соответствует цилиндру $\varnothing 25$)		
Скорость (без нагрузки), мм/с		33	100	200	33	100	200
Осевая нагрузка, H		80	43	24	196	117	72
Стандартные длины хода, мм		25, 40, 50, 100, 200					
Рабочая температура, ${ }^{\circ} \mathrm{C}$		5 ~ 40					
Масса (без монтажных элементов), кг	LIZB	0,67 + (0,07 /на 50 мм длины хода)			1,74 + (0,16/на 50 мм длины хода)		
	LIZC	0,72 + (0,03/на 50 мм длины хода)			1,72 + (0,16 /на 50 мм длины хода)		
Допустимое отклонение длины хода		+10					
Электродвигатель		Постоянного тока					
Контроллер для управления электроприводом		LC3F212-5A3]			LC3F212-5A5]		

Номер для заказа

[^45]${ }^{2}$ Для типа с креплением на цапфе: макс. длина хода 150 мм, скорость L.
${ }^{3)}$ Только для серии LZC

Размеры электропривода

LZB

	A	B	C	D	E	F	G	H	I
L*ZBB3	214.5	106.5	21	87	$\phi 38$	$\phi 14$	M5	M20	M30
L*ZBB5	282	135.5	33	113.5	$\phi 54.5$	$\phi 22$	M8	M32	M45

LZC

	A	B	C	D	E	F	G	H	I	J
L*ZCB3	203	107	8	88	$\phi 38$	$\phi 14$	M5	24	38	M4
L*ZCB5	268	139	13	116	$\phi 54.5$	$\phi 22$	M8	38	58	M4

Контроллер для электрического привода LC3F2

Предназначен для управления двигателем электрического привода LZB/LZC

- Возможность ручного управления
- Возможность регулировки усилия подачи
- Управление при помощи трех входных сигналов (направление движения, регулировка нагрузки, ВКЛ / ВЫКЛ)

LC3F212-5A3 \square

LC3F212-5A5 \square

Технические характеристики

Номер для заказа	LC3F212-5A3口	LC3F212-5A5ロ
Используется с электроприводом		
Напряжение питания	24 В пост. тока $\pm 10 \%$	
Потребление тока, А	Не более 1,3	Не более 2,3
Цвет панели	Серый	Голубой
Входной сигнал	Опторазвязка, 24 В пост. тока $\pm 10 \%$, не более 8мА на 1 точку	
Выбор осевого усилия	100 \% или регулируемое (в диапазоне от 10 до 70 \%)	
Рабочая температура, ${ }^{\circ} \mathrm{C}$	5-40	
Относительная влажность воздуха, \%	35-85	
Требования к окружающей среде	Для установки внутри помещения, в месте, недоступном для прямых солнечных лучей. Воздух рабочей зоны не должен содержать коррозионно-активных или горючих газов, масляного тумана, частиц пыли	
Светодиодная индикация	Индикатор питания POWER, индикатор направления движения A-PHASE, индикатор отсутствия функционирования OFF, индикатор регулировки момента SET	
Bec, г	145	

Номер для заказа

Контроллер LC3F2 \square

Описание	Типоразмер электропривода	
	3	5
В комплект поставки входят ответные части разъемов (3 шт.) в разо- бранном виде, без проводов	LC3F212-5A3A	LC3F212-5A5A
Без ответных частей разъемов	LC3F212-5A3B	LC3F212-5A5B

Принадлежности (заказываются отдельно)

Наименование	Номер для заказа		
	Длина кабеля 1 м	Длина кабеля 2 м	Длина кабеля 5 м
Кабель питания в сборе	LC3F2-1-C1-01-1	LC3F2-1-C1-02-1	-
Ответная часть разъема CN2 в сборе с кабелем	LC3F2-1-C2-01-1	LC3F2-1-C2-02-1	-
Ответная часть разъема CN3 в сборе с кабелем	-	LC3F2-1-C3-02-1	LC3F2-1-C3-05-1
Комплект ответных частей разъемов (3 шт.) в разобранном виде, без проводов		LC3F2-1-C0	

Кабель питания (ответная часть разъема CN1)

Контакт		№ контакта	Цвет провода
FG	Земля	1	Желтый/зеленый
DC(+)	+24 B	2	Коричневый
DC(-)	0 B	3	Синий

Ответная часть разъема CN2 (входные сигналы с блока управления)

Контакт	Входные сигналы	описание
COM	общий	№1 белый
	ON: пуск двигателя	№2 красный
	OFF: остановка двигателя	№3
ЖET	ON: регулировка нагрузки	Желтый
	OFF: 100\% значение нагрузки	№4
A-PHASE	ON: втягивание (A-PHASE)	№
	OFF: выдвижение (B-PHASE)	Оранж.

Ответная часть разъема CN3 (выходные сигналы на электропривод)

Контакт	№ контакта	Цвет провода
OUT A	1	Синий
OUT B	2	Красный

Индикация и настройка

Размеры контроллера LC3F2
Детали зажима защитного заземления (вХодят в комплект поставки)

Зажимной винт М3×4	1 шт.
Шайба 3 пружинная	1 шт.
Стопорная зубчатая шайба 3	1 шт.

Электронные датчики положения D-M9N / D-M9P / D-M9B

Технические характеристики

Номер для заказа	D-M9N	D-M9P	D-M9B
Кол-во выводов	3		2
Выход	NPN-структура	PNP-структура	-
Область применения	Управление на ИС, реле, ПЛК		Реле (24 VDC), ПЛК
Напряжение питания, VDC	5, 12, 24 (от 4,5 до 28)		-
Потребление тока, мА	не более 10		-
Рабочее напряжение, VDC.	Не более 28	-	24 (10~28)
Макс. ток, мА	Не более 40		2,5~40
Внутр. падение напряжения, В	Не более 0,8		Не более 4
Ток покоя	Не более 100 мкА при 24 VDC		Не более 0,8 мА
Индикатор рабочего состояния	Светодиодный, красного свечения		
Масса, г	8		7
Время срабатывания, мс	1		
Устойчивость к ударным нагрузкам, м/¢ ${ }^{2}$	1000		
Электр. прочность изоляции	1000 VAC в течение 1 мин. (между проводом и корпусом)		
Кабель	$0,5 \mathrm{~m}$, изоляция - маслостойкий винил, $2,7 \times 3,2$ мм, сечение 0,15 Mm 2, 3 жилы (D-M9N и D-M9P), 2 жилы - D-M9B		

- Рабочая температура - от -10 до $+60^{\circ} \mathrm{C}$
- Сопротивление изоляции - не менее 50 МОм при 500 VDC
- Степень защиты IP67 (стандарт IEC529),водонепроницаемость JIS C 0920, маслостойкость
- Соответствие стандартам CE

[^0]: \triangle Caution
 *1) Vertical type is equipped with brake.
 Since a regenerative absorption unit may be necessary depending on the operating conditions, separate inquiry should be made.
 *2) Consult SMC regarding options.

[^1]: Please note that combinations other than those shown above cannot be produced.

[^2]: \triangle Caution
 Note) Since a regenerative absorption unit may be necessary for vertical specifications, a separate inquiry should be made.

[^3]: Note) Special T-nuts are required to secure the body. The special T-nuts are included with the body unit
 Refer to "Options" on page 40 regarding the quantity of T-nuts.
 The body mounting reference plane and work piece mounting reference plane should be used as standards when mounting equipment

[^4]: Please note that combinations other than those shown above cannot be produced.
 Refer to page 10 for dimensions.

[^5]: * Consult with SMC in case the above conditions are exceeded.

[^6]: Please note that combinations other than those shown above cannot be produced.

[^7]: * Refer to the motor compatibility table on page 42 when specified without motor.

 For the dimensions of the motor mounting area, refer to the dimensions for Series LJ1 ${ }_{\mathrm{S}}^{\mathrm{S}} 30$ on page 43.
 These may be used for reference during design and assembly.

 * For detailed driver specifications, etc., inquiries should be directed to the respective motor manufacturers.

[^8]: Please make separate inquiry regarding combinations with ball screw and a special slider guide, which can be arranged in addition to the above.
 Refer to page 30 for dimensions.

[^9]: Screen example

[^10]: * PC-98 Series is a registered trade mark of NEC Corporation.

[^11]: Features 1

[^12]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^13]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^14]: $\mathrm{m}:$ Transfer load (kg) Me : Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^15]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^16]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^17]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration ($\mathrm{mm} / \mathrm{s}^{2}$) L : Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^18]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^19]: * Values will vary slightly depending on the operating conditions.

[^20]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^21]: * Values will vary slightly depending on the operating conditions.

[^22]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page 71 for deflection data.

[^23]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^24]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^25]: m : Transfer load (kg) Me: Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^26]: $\mathrm{m}:$ Transfer load (kg) Me: Allowable dynamic moment

[^27]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^28]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^29]: Refer to page $\mathbf{7 1}$ for deflection data.

[^30]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^31]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^32]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^33]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^34]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^35]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and

[^36]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^37]: $\mathrm{m}:$ Transfer load (kg)
 Me : Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)
 Refer to page $\mathbf{7 1}$ for deflection data.

[^38]: m : Transfer load (kg)
 Me : Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^39]: m : Transfer load (kg)
 Me : Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^40]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^41]: m : Transfer load (kg)
 Me : Allowable dynamic moment
 a : Work piece acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \quad \mathrm{L}$: Overhang to work piece center of gravity (mm)

[^42]: * Refer to pages starting with 89 for driver dimensions, etc. Furthermore, for detailed specifications, etc., contact each motor manufacturer.
 * For a non-standard motor specification when the motor is mounted before shipping, the driver is included but the cable that connects the motor and driver is optional. Refer to page 66 for part numbers.

[^43]: Be sure to use the attached mounting screws.

[^44]: * Другие значения длины хода - по запросу

[^45]: ${ }^{1)}$ Только для серии LZB.

