SSMC

Low Profile Air Gripper Series MHF2

Low profile air gripper with space-saving design is newly released.

Low Profile Air Gripper Series MHF2

Height is approximately $1 / 3$ the size of an equivalent Series MHZ2.

-The low profile design saves space and reduces bending moments.
Improved accuracy with smooth operation

- Reduced bending moment and vibration

Stroke selection is available.

3 standard stroke lengths are available for each bore size.
Stroke can be selected to suit the work piece.

Improved mounting repeatability

Auto switches can be mounted on both sides． ＂

Piping is available from 2 directions
Linear guide provides：

High degree of mounting flexibility

As no brackets are required，mounting height can be minimized．

Strong holding force

Double piston construction achieves compact design with strong holding force．

Model	Bore size	Holding force（N）
MHF2－8D \square	8	19
MHZ2－10D \square	10	11
MHF2－12D \square	12	48
MHZ2－20D \square	20	42
MHF2－16D \square	16	90
MHZ2－25D \square	25	65
MHF2－20D \square	20	141
MHZ2－32D \square	32	158

Series MHF2

Model Selection

Model Selection
Selection procedure

Step 1 Confirmation of gripping force

Model selection illustration

Gripping force at least 10 to $\mathbf{2 0}$ times the work piece weight
The "10 to 20 times or more of the work piece weight" recommended by SMC is calculated with the safety margin of a $=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=0.2$	When $\mu=0.1$
F $=\frac{\mathrm{mg}}{2 \times 0.2} \times 4$ $=10 \times \mathrm{mg}$	$\mathrm{F}=\frac{\mathrm{mg}}{2 \times 0.1} \times 4$ $=20 \times \mathrm{mg}$
个	个

When gripping a work piece as in the figure to the left and with the following definitions,
F: Gripping force (N)
μ : Coefficient of friction between attachments and work piece
m : Work piece mass (kg)
$\mathrm{g}:$ Gravitational acceleration (= $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Work piece weight (N)
the conditions under which the work piece will not drop are
$\underline{\underline{2 \mu}} \mathbf{F}>\mathbf{m g}$
Number of fingers
and therefore,
F $>\frac{\mathbf{m g}}{\mathbf{2 \times \mu}}$
With " a " as the safety margin, F is determined as follows:
F $=\frac{\mathrm{mg}}{2 \times \mu} \times \mathbf{a}$
(Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for safety reasons, SMC recommends selecting a gripping force which is at least 10 to 20 times the work piece weight.

- If is necessary to allow a greater safety margin for high accelerations and strong impacts, etc.

Step 1 Effective gripping force: Series MHF2

-Expressing the effective gripping force
The effective gripping force shown in the graphs to the right is expressed as F , which is the thrust of one finger when both fingers and attachments are in full contact with the work piece as shown in the figure below.

Internal gripping

MHF2-8D \square

MHF2-16D \square

MHF2-12D \square

MHF2-20D \square

Step 2 Effective gripping force: Series MHF2

External gripping

Internal gripping

-The air gripper should be operated so that the amount of overhang " H " will stay within the range given in the graphs below.

- If the work piece gripping point goes beyond the range limits, this will have an adverse effect on the life of the air gripper.

MHF2-8D \square

MHF2-16D \square

MHF2-12D \square

MHF2-20D \square

L: Distance to the point at which the load is applied (mm)

Model	Allowable vertical load Fv (N)	Mitch moment $\mathbf{M p}(\mathbf{N} \cdot \mathbf{m})$		
MHF2-8D \square	58	Yaw moment $\mathbf{M y (N} \cdot \mathbf{m})$	Roll moment $\mathbf{M r}(\mathbf{N} \cdot \mathbf{m})$	
MHF2-12D \square	98	0.26	0.26	0.53
MHF2-16D \square	176	0.68	0.68	1.4
MHF2-20D \square	294	2	1.4	2.8

Note) The load and moment values in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\begin{array}{r} \text { Allowable load } \mathrm{F}(\mathrm{~N})=\frac{\mathrm{M}(\text { Maximum allowable moment })(\mathrm{N} \cdot \mathrm{~m})}{\mathrm{L} \times \frac{10^{-3}}{*}} \\ (* \text { Unit converted invariable number) } \end{array}$	When a load off $=10 \mathrm{~N}$ is operating, which applies pitch moment to point $L=30 \mathrm{~mm}$ from the end of the MHF2-12D finger. $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } \mathrm{f}=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$ Therefore, it can be used.

Low Profile Air Gripper Series MHF2

How to Order

Applicable auto switches/Refer to pages 25 through 28 for auto switch specifications.

Type	Special function	Electrical entry	Indicator light	Wiring (Output)	Load voltage			Auto switch type		Lead wire length (m) *			Note2) Flexible lead wire (-61)	Applicable loads	Applicable model Bore size (mm)				
					DC		AC	Electrical entry direction		$\begin{aligned} & 0.5 \\ & \text { (Nil) } \end{aligned}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$							
							Perpendicular	In-line	8						12	16	20		
		Grommet	Yes	3-wire (NPN)	24 V	12V			F9NV	F9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	-			3-wire (PNP)				F9PV	F9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
				2-wire				F9BV	F9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Relay	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Note 1) Diagnostic indication (2-colour display)			3-wire (NPN)			-	F9NWV	F9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	PLC	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
				3-wire (PNP)				F9PWV	F9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc		-	\bigcirc	\bigcirc	\bigcirc	
				2-wire				F9BWV	F9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	

*Lead wire length symbol: $0.5 \mathrm{~m} \cdots \cdots$ Nil (Example) F9N
$3 m \cdots \cdots \cdots$ (Example) F9NL
$5 m \cdots \cdots \cdots$ Z (Example) F9NWZ
*Auto switches marked "O" are produced upon receipt of order.
Note 1) Be careful for the differential of 2-color display type. Refer to "Auto Switch Hysteresis" on page 22.

Note2) For the flexible wire specification, enter-61 after the part number.
Example: When ordering with an air chuck

MHF2-12D-F9NVS -61

- Flexible wire
These auto switches have been changed Contact SMC or view www.smcworld.com

F9N \Rightarrow M9N	F9NV \Rightarrow M9NV
F9P \Rightarrow M9P	F9PV \Rightarrow M9PV
F9B \Rightarrow M9B	F9BV \Rightarrow M9BV

When ordering only an auto switch

$$
\begin{aligned}
& \text { D-F9PL - } \quad \underset{\bullet}{61} \\
& \cdot \text { Flexible wire }
\end{aligned}
$$

Specifications

Fluid	
Operating pressure	$\varnothing 8: 0.15$ to 0.7 MPa
	Air
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$ (with no condensation)
Repeatability	$\pm 0.05 \mathrm{~mm}$ Note1)
Maximum operating frequency	Short stroke
	Middle stroke
	Long stroke
Lubrication	

Note 1) This is the value when no offset load is applied to the finger.
When an offset load is applied to the finger, the maximum value is $\pm 0.15 \mathrm{~mm}$ due to the influence of backlash of the rack and pinion.
Note 2) Refer to pages 25 through 28 for further information on auto switch specifications.

Model

Action	Model	Cylinder bore (mm)	Gripping force Effective holding force per finger N	Opening /closing stroke (Both sides) mm	Note2) Weight g	Unobstructed capacity (cm ${ }^{3}$)	
						Finger open side	Finger close side
Double acting	MHF2-8D	8	19	8	65	0.7	0.6
	MHF2-8D1			16	85	1.1	1.0
	MHF2-8D2			32	120	2.0	1.9
	MHF2-12D	12	48	12	155	1.9	1.6
	MHF2-12D1			24	190	3.3	3.0
	MHF2-12D2			48	275	6.1	5.8
	MHF2-16D	16	90	16	350	4.9	4.1
	MHF2-16D1			32	445	8.2	7.4
	MHF2-16D2			64	650	14.9	14.0
	MHF2-20D	20	141	20	645	8.7	7.3
	MHF2-20D1			40	850	15.1	13.7
	MHF2-20D2			80	1,225	28.0	26.6

[^0]Note 2) Excluding the auto switch weight

Symbol
Double acting

MHF2-8D, MHF2-8D1

MHF2-8D2

Parts list

Parts list			
No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Hard anodized
$\mathbf{2}$	Piston	Stainless steel	
$\mathbf{3}$	Joint	Stainless steel	Heat treatment
$\mathbf{4}$	Guide rail	Stainless steel	Heat treatment
$\mathbf{5}$	Finger	Stainless steel	Heat treatment
$\mathbf{6}$	Roller stopper	Stainless steel	
$\mathbf{7}$	Pinion	Carbon steel	Nit riding
$\mathbf{8}$	Cap A	Aluminium alloy	Clear anodized
$\mathbf{9}$	Cap B	Aluminium alloy	Clear anodized
$\mathbf{1 0}$	Cap C	Aluminium alloy	Clear anodized

Parts list

No.	Description	Material	Note
11	Head damper	Urethane rubber	
12	Clip	Stainless steel wire	
13	Rack	Stainless steel	Nit riding
14	Magnet	Rare earth magnet	Nickel plated
15	Steel balls	High carbon chromium bearing steel	
16	Wear ring	Synthetic resin	
17	Roller	High carbon chromium bearing steel	
18	Needle roller	High carbon chromium bearing steel	
19	Parallel pin	Stainless steel	
20	Piston seal	NBR	
21	Gasket	NBR	

Replaceable parts list

Description	Kit No.			Contents
	MHF2-8D	MHF2-8D1	MHF2-8D2	
Seal kit	MHF8-PS	MHF8-PS	MHF8-PS-2	$12,20,21$
Finger assembly	MHF-A0802	MHF-A0802-1	MHF-A0802-2	$3,4,5,6,15,17,19$ Mounting screw

Bolts for body through hole mounting

Part No.	Number of pieces	
MHF-B08	MHF2-8D	2 pieces/unit
	MHF2-8D1	2 pieces/unit
	MHF2-8D2	4 pieces/unit

[^1]MHF2-12D \square to 20D \square

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Hard anodized
$\mathbf{2}$	Piston	Aluminium alloy	Clear anodized
$\mathbf{3}$	Joint	Stainless steel	Heat treatment
$\mathbf{4}$	Guide rail	Stainless steel	Heat treatment
$\mathbf{5}$	Finger	Stainless steel	Heat treatment
$\mathbf{6}$	Roller stopper	Stainless steel	
$\mathbf{7}$	Pinion	Carbon steel	Nit riding
$\mathbf{8}$	Cap A	Aluminium alloy	Clear anodized
$\mathbf{9}$	Cap B	Aluminium alloy	Clear anodized
$\mathbf{1 0}$	Cap C	Aluminium alloy	Clear anodized
$\mathbf{1 1}$	Head damper	Urethane rubber	
$\mathbf{1 2}$	Rack	Stainless steel	Nit riding

Parts list

No.	Description	Material	Note
13	Magnet	Tare earth magnet	Nickel plated
14	Steel balls	High carbon chromium bearing steel	
15	Wear ring	Synthetic resin	
16	¢12: Roller	High carbon chromium bearing steel	
	¢16 to 20: Parallel pin	Stainless steel	
17	Needle roller	High carbon chromium bearing steel	
18	ه12: R shape snap ring	Carbon steel	Nickel plated
	ه16 to 20: C type snap ring		
19	Parallel pin	Stainless steel	
20	Piston seal	NBR	
21	Gasket	NBR	
22	Gasket	NBR	

Replaceable parts list

Description	Kit No.			Contents
	MHF2-12D	MHF2-12D1	MHF2-12D2	
Seal kit	MHF12-PS	MHF12-PS	MHF12-PS	20, 21, 22
Finger assembly	MHF-A1202	MHF-A1202-1	MHF-A1202-2	3, 4, 5, 6, 14, 16,19 Mounting screw
Description	Kit No.			Contents
	MHF2-16D	MHF2-16D1	MHF2-16D2	
Seal kit	MHF16-PS	MHF16-PS	MHF16-PS	20, 21, 22
Finger assembly	MHF-A1602	MHF-A1602-1	MHF-A1602-2	3, 4, 5, 6, 14, 16,19 Mounting screw
Description	Kit No.			Contents
	MHF2-20D	MHF2-20D1	MHF2-20D2	
Seal kit	MHF20-PS	MHF20-PS	MHF20-PS	20, 21, 22
Finger assembly	MHF-A2002	MHF-A2002-1	MHF-A2002-2	3, 4, 5, 6, 14, 16,19 Mounting screw

Bolts for body through hole mounting

Part No.	Number of pieces	
MHF-B12	MHF2-12D	2 pieces/unit
	MHF2-12D1	2 pieces/unit
	MHF2-12D2	4 pieces/unit

*The bolts for body through hole mounting are attached to the product. They are also provided at an order of 1 piece or more with the above part numbers.
*When mounting MHF2-16D \square or MHF2-20D \square with the body through holes, use hexagon socket head screws available on the market.

Series MHF2

Dimensions

MHF2-8D

Use the attached hexagon socket head screws for mounting holes.

MHF2-8D1

*Use the attached hexagon socket head screws for mounting holes.

Series MHF2

Dimensions

MHF2-8D2

E-E
*Use the attached hexagon socket head screws for mounting holes.
$\varnothing 2.5 \mathrm{H} 9{ }_{0}^{+0.025}$ depth 2.5

Groove for auto switch mounting

E-E
*Use the attached hexagon socket head screws for mounting holes.

Series MHF2

Dimensions
MHF2-12D1
Scale: 65\%

*Use the attached hexagon socket head screws for mounting holes.

Groove for auto switch mounting

MHF2-12D2
Scale: 65\%

*Use the attached hexagon socket head

Groove for auto switch mounting

Series MHF2

Dimensions
MHF2-16D
Scale: 50\%

4-M5 thread depth 5.5
Mounting thread

Groove for auto switch mounting

Groove for auto switch mounting

Series MHF2

Dimensions
MHF2-16D2

Groove for auto switch mounting

Series MHF2

Dimensions

MHF2-20D1

Series MHF2

Body Option: Side Piping Type

MHF2- $\square \mathbf{D} \square \mathbf{R}$

*For dimensions not given above, please refer to the table of dimensions on pages 9 through 20.

Body option dimension table

Auto Switch Hysteresis

Auto switches have hysteresis similar to micro switches. Use the table below as a guide when adjusting auto switch positions, etc.

Hysteresis

	D-F9 \square (V)	D-F9 \square W(V)	
		Red ON	Green ON
MHF2-8D \square	0.5	0.5	1
MHF2-12D \square	0.5	0.5	1
MHF2-16D \square	0.5	0.5	1
MHF2-20D \square	0.5	0.5	1

Auto Switch Mounting

Insert the auto switch into the switch mounting groove in the air chuck in the direction shown below, and after setting the mounting position, tighten the attached switch mounting screw with a screwdriver.

Note) Use a screwdriver with a grip diameter of 5 to 6 mm to tighten the auto switch mounting screw. The tightening torque should be about 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$. When you begin to feel that the screw is being tightened, turn it further by 90°.

\triangle Caution

When using an auto switch on the mounting plate side, the switch will protrude from the end face as shown below. Please provide a run off apace of 2 mm or deeper on the mounting plate.

Auto Switch Protrusion from the Body End Surface

-The amount of auto switch protrusion from the body end surface is shown in the table below.
-Use this as a standard when mounting, etc.
Auto switch protrusion

Lead w	re type	In-lin	entry	Perpendi	ular entry
	tration		\underline{L}		
Model		D-F9 \square	D-F9 \square W	D-F9 \square V	D-F9 $\square \mathrm{WV}$
	Open	6.5	6.5	4.5	4.5
M	Close	6.5	6.5	4.5	4.5
MHF2-8D1	Open	6.5	6.5	4.5	4.5
MHF2-8D1	Close	6.5	6.5	4.5	4.5
MHF2-8D2	Open	0.5	0.5	-	-
	Close	0.5	0.5	-	-
MHF2-12D	Open	3	3	1	1
MHF2-12D	Close	3	3	1	1
MHF2-12D1	Open	1	1	-	-
MHF2-12D1	Close	1	1	-	-
MHF2-12D2	Open	-	-	-	-
MHF2-12D2	Close	-	-	-	-
	Open	-	-	-	-
MHF2-16D	Close	-	-	-	-
	Open	-	-	-	-
MHF2-16D1	Close	-	-	-	-
	Open	-	-	-	-
MHF2-16D2	Close	-	-	-	-
	Open	-	-	-	-
MHF2-20D	Close	-	-	-	-
MHF2-20D1	Open	-	-	-	-
MHF2-20D1	Close	-	-	-	-
MHF2-20D2	Open	-	-	-	-
MHF2-20D2	Close	-	-	-	-

[^2]
Series MHF2

Installation and Setting of Auto Switch

Various auto switch applications are possible through different combinations of auto switch quantity and detecting positions.

1) Detection of work (External holding)

Note) $\cdot l$ is recommended that work be held at the center of the finger stroke.
-lf work is held around the end position of finger opening stroke, the above detecting combination may be limited due to the ON/OFF differential of the auto switches.

Series MHF2

Installation and Setting of Auto Switch

Various auto switch applications are possible through different combinations of auto switch quantity and detecting positions.
2) Detection of work (Internal holding)

[^3]-If work is held around the end position of finger opening stroke, the above detecting combination may be limited due to the ON/OFF differential of the auto switches.

Series MHF2

Auto Switch Common Specifications

Auto Switch Common Specifications

Type	Solid state switch
Operating time	1 ms or less
Shock resistance	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500 VDC (between lead wire and case)
Withstand voltage	1000 VAC for 1 min (between lead wire and case)
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$
Enclosure	IEC529 standard IP67, JISC0920 watertight construction

Lead Wire Length

Lead wire length indication
(Example)

Note 1) Lead wire length Z: 5 m applicable auto switch
Solid state switch: All models are produced upon receipt of order (as standard).
Note 2) The standard lead wire length is 3 meters for water resistant 2-color display solid state auto switches. (0.5 m is not available.)
Note 3) For the flexible wire specification, enter-61 after the part number.
(Example) D-F9PL-61
${ }^{6}$ Flexible wire Specifications

Lead Wire Colour Changes

The lead wire colours of SMC auto switches have been changed as shown below to satisfy IEC947-5-2 standards for production beginning September, 1996 and thereafter.
Take special care regarding wire polarity during the time that old colours still coexist with the new colours.

2-wire

	Old	New
Output (+)	Red	Brown
Output (-)	Black	Blue

Solid state with diagnostic output

	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black
Diagnostic output	Yellow	Orange

3-wire

	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black

Solid state with latch type diagnostic output

	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black
Latch type diagnostic output	Yellow	Orange

Series MHF2

Auto Switch Connections and Examples

Basic Wiring

Examples of Connection to PLC

Sink input specifications

3-wire, NPN

2-wire

Source input specifications
3-wire, PNP

2-wire

Connection Examples for AND (Series) and OR (Parallel)

AND connection for NPN output (performed with switches only)

OR connection for NPN output

The indicator lights will light up when both switches are turned ON.

Connect according to the input specification of the sequence controller because the connection method varies with the input specification of the sequence controller.

2-wire with 2 switch AND connection

In case of AND connection of two 2-wire type switches, load malfunction may be caused by the load voltage decrease when turned ON. The indicator light comes on when the two switches are turned ON .

Load voltage when turned $\mathrm{ON}=$ Power supply voltage - Residual voltage $\times 2 \mathrm{pcs}$.

$$
\begin{aligned}
& =24 \mathrm{~V}-4 \mathrm{~V} \times 2 \mathrm{pcs} . \\
& =16 \mathrm{~V}
\end{aligned}
$$

(Example) Power supply voltage: 24VDC Internal voltage drop: 4V

2-wire with 2 switch OR connection

Load voltage when turned OFF = Leakage voltage $\times 2$ pcs. \times Load impedance

$$
=1 \mathrm{~mA} \times 2 \mathrm{pcs} \times 3 \mathrm{k} \Omega
$$

$$
=6 \mathrm{~V}
$$

(Example) Load impedance: $3 \mathrm{k} \Omega$

[^4]The load voltage will not increase when the switch is turned OFF because there is no current leakage. However, depending on the number of the switches in the ON state, the current value at each switch will be distributed and consequently reduced, making the indication light dark or even impossible to light up.

Solid State Switch/Direct Mounting
 D-F9N(V), D-F9P(V), D-F9B(V)

Auto Switch Specifications

\triangle Caution

Precautions

When fixing the switch, be sure to use the set screws attached on the body. Using screws other than the specified ones will cause damage to the switch.

Auto Switch Internal Circuits

D-F9B, F9BV

D-F9 \square, D-F9 $\square \mathrm{V}$ (with indicator light)						
Auto switch symbol	D-F9N	D-F9NV	D-F9P	D-F9PV	D-F9B	D-F9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring method	3-wire				2-wire	
Output method	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24VDC relay, PLC	
Power supply	5, 12, 24VDC (4.5 to 28VDC)				-	
Current consumption	10 mA or less				-	
Load voltage	28VDC or less		-		24VDC (10 to 28VDC)	
Load current	40 mA or less		80 mA or less		5 to 40 mA	
Internal voltage drop	1.5 V or less (0.8V or less at 10 mA load current)		0.8 V or less		4 V or less	
Leakage current	100 $\mu \mathrm{A}$ max at 24 VDC				0.8 mA or less	
Indicator light	ON: Red light emitting diode					

\bullet Lead wire - Heavy duty oil resistant vinyl cord, ø2.7, 3 cores (Brown, Black, Blue), $0.15 \mathrm{~mm}^{2}$, 2 cores (Brown, Blue), $0.18 \mathrm{~mm}^{2}, 0.5 \mathrm{~m}$.
Note 1) Refer to page 21 for solid state switch common specifications.
Note 2) Refer to page 21 for lead wire length.
Auto Switch Weight Table Unit: g

Model		D-F9N(V)	D-F9P(V)	D-F9B(V)
lead wire length (m)	0.5	7	7	6
	3	37	37	31
	5	61	61	51

Auto Switch Dimensions

D-F9 \square

D-F9 $\square \mathbf{V}$

2-Color Display Solid State Switch/Direct Mounting D-F9NW(V), D-F9PW(V), D-F9BW(V)

Grommet

Auto Switch Internal Circuits

D-F9PW, F9PWV

D-F9BW, F9BWV

Indicator light/Display method

Auto Switch Specifications

D-F9 \square W, D-F9 \square WV(with indicator light)						
Auto switch symbol	D-F9NW	D-F9NWV	D-F9PW	D-F9PWV	D-F9BW	D-F9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring method	3-wire				2-wire	
Output method	NPN		PNP			
Applicable load	IC circuit, Relay IC, PLC				24VDC	elay, PLC
Power supply	5, 12, 24VDC (4.5 to 28VDC)					
Current consumption	10 mA or less					-
Load voltage	28VDC or less		-		24VDC (10	to 28VDC)
Load current	40 mA or less		80 mA or less			40mA
Internal voltage drop	1.5 V or less(0.8 V or less at 10 mA load current)		0.8 V or less			less
Leakage current	$100 \mu \mathrm{~A}$ max at 24 VDC				0.8 m	or less
Indicator light	Operating position $\cdots \cdots \cdots$ Red light emitting diode Most sensitive position \cdots Green light emitting diode					

\bullet Lead wire - Heavy duty oil resistant vinyl cord, ø2.7, 3 cores (Brown, Black, Blue), $0.15 \mathrm{~mm}^{2}$, 2 cores (Brown, Blue), $0.18 \mathrm{~mm}^{2}, 0.5 \mathrm{~m}$.
Note 1) Refer to page 21 for solid state switch common specifications.
Note 2) Refer to page 21 for lead wire length.

Auto Switch Weight Table

Model		D-F9NW(V)	D-F9PW(V)	D-F9BW(V)
Lead wire length (m)	0.5	7	7	7
	3	34	34	32
	5	56	56	52

Auto Switch Dimensions

D-F9■W

D-F9■WV
 Series MHF2 Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.


```
\ Caution : Operator error could result in injury or equipment damage.
\. Warning: Operator error could result in serious injury or loss of life.
\anger : In extreme conditions, there is a possible result of serious injury or loss of life.
```



```
Note 1) ISO 4414: Pneumatic fluid power - Recommendations for the application of equipment to transmission and control
    systems
Note 2) JIS B 8370: General Rules for Pneumatic Equipment
```


© Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.
2. Only trained personnel should operate pneumatically operated machinery and equipment.
Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
4. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
5. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
6. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back pressure.)

4. Contact SMC if the product is to be used in any of the following conditions:

1. Conditions and environments beyond the given specifications, or if product is used outdoors.
2. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
3. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Series MHF2
Air Gripper Precautions 1
Be sure to read before handling.

Precautions on design

\triangle Warning

1. A protective cover is recommended to minimize the risk of personal injury due to accidental contact with moving parts of the gripper.
2. If circuit pressure drops due to a power failure or trouble with the air supply, etc., there is a danger of work pieces dropping because of reduced gripping force.
Measures should be taken to protect against unexpected drop of work due to loss of air pressure.

Selection

© Warning

1. Keep the holding point within the specified range of the holding distance.
When the holding point distance becomes large, the finger attachment applies an excessively large load to the cross roller section, causing excessive play of the fingers and possibly leading to premature failure.
Refer to the graph of the specified range of the holding distance for each series.
"L and H "are
appropriate.

" H " is too long.

2. Attachment should be designed as light and short as possible.
3. Long and heavy attachment increases the inertia force to open or close the fingers. It may cause unsteady movement of fingers and have an adverse effect on life.
4. Even if holding point remains within the limited range, make the attachment as light and short as possible.

5. Select the large size gripper or use two or more grippers for one piece at once for handling long and large work.

\triangle Warning

3. Provide run off space in the attachment when using for the small or thin work.
If the run off space is not provided with the finger part, holding condition becomes unsteady and the holding point may slide from the best position.

4. Select the model whose holding force is sufficient against work weight.
Incorrect selection may lead to release of work etc.
Refer to "Effective holding force" and information to select the model by weight of work.
5. Do not use in applications where excessive external force or impact force may be applied to gripper.
It may cause malfunction.
Consult SMC with regard to any other applications.
6. Select the model taking the width of fingers between opening and closing points into consideration.

Selection

<In case of short width>

1. The holding condition becomes unsteady due to the unstable opening/closing width or the changeable work diameter
2. When using the auto switch, the detection is insufficient.
Refer to "Auto Switch Hysteresis" and set the stroke including the hysteresis length for reliable switch function.
When using water tight 2-color display auto switch, operation stroke may be limited due to light color setting at detection point. Refer to hysteresis of auto switch.

Mounting

© Warning

1.Do not drop nor dent the gripper when mounting.
Slight deformation can cause unaccuracy or malfunction.
2. Tighten the screw within the specified torque range to mount the attachment.
The tightening with large torque than specified range may cause malfunction, while the tightening with smaller torque may allow movement of holding position and dropping of work.

How to mount the attachment on fingers
Mount the attachment to the mounting female thread of the finger with a bolt etc. applying the following tightening torque.

Model	Bolt used	Maximum tightening torque N•m
MHF2-8D \square	$\mathrm{M} 2.5 \times 0.45$	0.36
MHF2-12D \square	$\mathrm{M} 3 \times 0.5$	0.63
MHF2-16D \square	$\mathrm{M} 4 \times 0.7$	1.5
MHF2-20D \square	$\mathrm{M} 4 \times 0.7$	1.5

Air Gripper Precautions 2
Be sure to read before handling.

Mounting

. Warning

3. Tighten the screw within the specified torque range to mount the attachment.
The tightening with large torque than specified range may cause malfunction, while the tightening with smaller torque may allow movement of holding position and dropping of work.
Mounting of gripper
Axis mounting (Body tapped)

Model	Bolt used	Max. tightening torque $\mathrm{N} \cdot \mathrm{m}$	Max. screw-in depth mm
MHF2-8D	$\mathrm{M} 3 \times 0.5$	0.95	7
MHF2-12D	$\mathrm{M} 4 \times 0.7$	2.2	10
MHF2-16D	$\mathrm{M} 5 \times 0.8$	4.5	12
MHF2-20D	$\mathrm{M} 6 \times 1$	7.8	15

Vertical mounting (Body tapped)

Model	Bolt used	Max. tightening torque $\mathrm{N} \cdot \mathrm{m}$	Max. screw-in depth $\ell \mathrm{mm}$
MHF2-8D	M3 $\times 0.5$	0.63	4
MHF2-12D	$\mathrm{M} 4 \times 0.7$	1.5	5
MHF2-16D	$\mathrm{M} 5 \times 0.8$	3	5.5
MHF2-20D	$\mathrm{M} 6 \times 1$	5.2	6

Side mounting (Body tapped, Body through hole)
-Body tapped

Model	Bolt used	Max. tightening torque $\mathrm{N} \cdot \mathrm{m}$	Max. screw-in depth $\ell \mathrm{mm}$
MHF2-8D	M3 $\times 0.5$	0.63	4
MHF2-12D	M4 $\times 0.7$	1.5	5
MHF2-16D	M5 $\times 0.8$	3	5.5
MHF2-20D	M6 $\times 1$	5.2	6

-Body through hole

Model	Bolt used	Max. tightening torque N•m	Max. screw-in depth $\ell \mathrm{mm}$
MHF2-8D	*M2.5 $\times 0.45$	0.36	4
MHF2-12D	$* \mathrm{M} 3 \times 0.5$	0.63	5.2
MHF2-16D	$\mathrm{M} 4 \times 0.7$	1.5	-
MHF2-20D	$\mathrm{M} 5 \times 0.8$	3	-

*When mounting MHF2-8D \square or MHF2-12D \square with the body through holes, use the attached mounting screws.

© Caution

1. Avoid the excessive force on fingers when mounting the attachment.
Any change of fingers may cause the malfunction and deteriorate the accuracy.
2. Avoid the external force to fingers.
Fingers may be damaged by continual lateral or the impact load. Provide clearance to prevent the work or the attachment from striking against any object at the stroke end.
1) Stroke end when fingers are open Owith clearance

X Without clearance

2) Stroke end when gripper is moving Owith clearance

XWithout clearance

3) When turning over

3. Adjust the holding point so that excessive force will not be applied on fingers when inserting the work.
Particularly when performing a trial run, operate the equipment manually or with low cylinder pressure and speed while confirming that there is no impact or other unsafe conditions.
OHolding point is adjusted.

X Holding point is not adjusted.

4. If the closing speed of the fingers is greater than necessary, rattling and dam-age can occur due to the inertia of the fingers and attachments.
Therefore, a speed controller should be installed and adjusted so that there is no impact.
Applicable speed controller

Air gripper mounted typeAS1201F-M3 AS1201F-M5 etc	
Piping type -AS1000 series	
	AS1001F

Series MHF2
Air Gripper Precautions 3
Be sure to read before handling.

Piping

\triangle Caution

1. Preparation before piping

Thoroughly flush the fittings to prevent dust or chips from entering the gripper.
2. Wrapping of pipe tape

When piping and fittings are installed, care should be taken to prevent contamination (Chips from piping and seal materials).

Environment

\triangle Warning

1. Do not use in environment of corrosive gases, sea water, water, nor vapor or in environment gives bad influence specially. Some environment gives bad influence into dust cover and packing, it may lead malfunction and shortened life. Contact SMC after the environment is confirmed when you have the question.
2. Do not use in direct sun light.
3. Do not subject to excessive vibration.
4. Do not use close to flame.
5. Use a cover when gripper must be used in an environment where dust or cutting oil will come in contact with gripper.
6. Consult SMC for the use in any other special environment.

Lubrication

\triangle Caution

1. Non-lube type is lubricated already. Therefore, it is not necessary to lubricate before using.
When lubricating the gripper, use the turbine oil class1 (ISO VG32) and refuel continually.
When lubrication has been started, it must be continued throughout the life of the gripper or malfunction may result.

Maintenance

\triangle Warning

1. Do not enter the transfer line nor put the object.
It may cause unexpected accidents.
2. Do not enter your hands between finger and attachment.
It may cause unexpected accidents.
3. Confirm that no work is held by fingers before releasing the compressed air to remove the gripper from the line.
Dropping of work can be dangerous.

Design and Selection

© Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for load current, voltage, temperature or impact.
2.Take precautions when multiple air grippers are used close together.
When multiple auto switch air grippers are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum air gripper separation of 40 mm . (When the allowable separation is indicated for each air gripper series, use the specified value.)
3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, although the auto switch will operate, the operating time will be shortened and the load may not operate properly if the speed is too great. The maximum detectable piston speed is:
$\mathrm{V}(\mathrm{mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }(\mathrm{ms})} \times 1000$
4. Keep wiring as short as possible.
<Solid state switch>
Although wire length should not affect switch function, use a wire of 100 m or shorter.
5. Take precautions for the internal voltage drop of the switch.
<Solid state switch>
Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed switch.

- Take note that there will be a large voltage drop if auto switches are connected in series as shown below. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.
$1 \mathrm{O}-\mathrm{O}-\cdots$ - O Load
- In the same way, when operating below the specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.
Supply voltage - Internal voltage $>$ Minimum operating
Also, note that a 12 VDC relay is not applicable.

6. Pay attention to leakage current.

<Solid state switch>
With a 2 wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.
Operating current of load $>$ Leakage current
(OFF condition)
If the criteria given by the above formula are not met, it will not reset correctly (stays ON). Use a 3 wire switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.
7. Do not use a load that generates surge voltage.
<Solid state switch>
Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch having a built-in surge absorbing element.
8. Cautions for use in an interlock circuit.
When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch.
Also perform periodic maintenance and confirm proper operation.
9. Secure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Mounting and Adjustment

\triangle Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry a cylinder by the auto switch lead wires.
Never carry a cylinder by its lead wires. This may not only cause broken lead wires but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper fastening torque.
When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged.
On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position. (Refer to page 18 regarding switch mounting, movement and fastening torque, etc.)

Wiring

\triangle Warning

1. Avoid repeatedly bending or stretching lead wires.
Broken wires will result from applying repeated bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.

<2-wire types>

If the power is turned $O N$ when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Confirm proper insulation

 of wiring.Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.) Damage may occur due to excess current flow into a switch.

Series MHF2
Auto Switch Precautions 2
Be sure to read before handling.

Wiring

Warning

4.Do not run wiring near power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.
*Lead wire colour changes
Lead wire colours of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter.
Special care should be taken regarding wire polarity during the time that the old colours still coexist with the new colours.

2-wire

	Old	New
Output (+)	Red	Brown
Output (-)	Black	Blue

Solid state with diagnostic output

	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black
Diagnostic output	Yellow	Orange

3-wire

	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black

Solid state with latch type diagnostic output

	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black
Latch type diagnostic output	Yellow	Orange

5. Solid state with latch type diagnostic output
<Solid state switch>
Models D-F9 $\square(\mathrm{V}), \mathrm{F9} \square \mathrm{~W}(\mathrm{~V})$ and all models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged.
Take special care to avoid reverse wiring with the power supply line (brown) and the output line (black) on 3 wire type switches.
6. Avoid incorrect wiring.
<Solid state switch>
1) If connectors are reversed on a 2 wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.

Wiring

2) If connections are reversed (power supply line + and power supply line -) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line (-) is connected to the black wire, the switch will be damaged.

Operating Environment

\triangle Warning

1. Never use in an atmosphere of explosive gases.

The structure of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive since this may cause a serious explosion.
2. Do not use in an area where magnetic field is generated.
Auto switches will malfunction or magnets inside air grippers will become demagnetized.
3. Do not use in an environment where auto switches will be continually exposed to water.
Although switches, except for a few models, conform, to the IEC standard IP67 structure (JISC 0920: watertight construction), do not use switches in applications where they are continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.
Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult SMC if switches are used where there are temperature cycles other than normal air temperature changes, as they may be adversely affected internally.

Operating Environment

6. Do not use in locations where surge is generated.
<Solid state switch>
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around air grippers with solid state auto switches, this may cause deterioration or damage to the switches. Avoid sources of surge generation and disorganized lines.
7. Avoid accumulation of iron powder or close contact with magnetic substances.
When a large amount of ferrous powder such as matching chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch air gripper, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the air gripper.

Maintenance

© Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Secure and tighten switch mounting screws.
If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.
To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
3) Confirm the lightening of the green light on the 2-color display type switch.
Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate, Readjust the mounting position until the green LED lights up.

Other

\triangle Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc.

ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA, TAIWAN, THAILAND, USA, VENEZUELA

SMC UK Contact Numbers

 Head Office: SMC Pneumatics (UK) Ltd, Vincent Avenue, Crownhill, Milton Keynes MK8 0ANTHE NATIONAL SALES CENTRE FOR ENGLAND \& WALES

Internal Sales

(Price, Delivery Information \& Order Placement)
Freephone: 08001382930 Fax: 01908555064
e-mail:sales@smcpneumatics.co.uk

Customer Services

 (Post-Order Resolution)Freephone: 08001382931 Fax: 01908555065
e-mail: customerservice@smcpneumatics.co.uk

SMC SALES CENTRE FOR SCOTLAND \& N. IRELAND

Tel: 01236781133 Fax: 01236780611

SMC Pneumatics (UK) Ltd, 1 Carradale Crescent, Broadwood Business Park, Cumbernauld, Glasgow G69 9LE

SMC UK Sales Partners

Birmingham
JAMES LISTER
Tel: 01215803800
Fax: 01215535951

Blackburn

BLACKBURN PNEUMATIC SYSTEMS LTD
Tel: 01254682232

Bristol
APPLIED AUTOMATION
Tel: 01179827769
Fax: 01179235522
Bury St Edmunds
PNEUMATIC LINES Tel: 01284706239 Fax: 01284761218

Cardif
WALES FLUID POWER
Tel: 02920494551
Fax: 02920481955

Plymouth

APPLIED AUTOMATION
el: 01752343300
Fax: 01752341161

[^0]: Note 1) At the pressure of 0.5 MPa , when holding point L is 20 mm .

[^1]: *The bolts for body through hole mounting are attached to the product. They are also provided at an order of 1 piece or more with the above part numbers.

[^2]: Note) There is no protrusion for sections of the table with no values entered.

[^3]: Note) •lt is recommended that work be held at the center of the finger stroke.

[^4]: Current leakage: 1 mA

